Abstract
Both calcitonin and prostaglandin E2 (PGE2) stimulate adenylate cyclase activity in the human breast cancer cell line (T 47D). The maximum cyclic AMP response to calcitonin exceeds that of PGE2. When maximal concentrations of the two hormones were added simultaneously to the cells, the amount of cyclic AMP generated was less than that seen with calcitonin alone. When cells were treated with the protein toxin of Bordetella pertussis (islet-activating protein; IAP) which inactivates the inhibitory regulatory component (Ni) of adenylate cyclase, there was no change in basal or calcitonin-responsive adenylate cyclase in intact cells. However, the PGE2 response was augmented at all dose levels, and this effect was dependent on the concentration of IAP. Moreover, in cells pretreated with IAP, simultaneous addition of PGE2 and calcitonin resulted in additivity rather than in inhibition of cyclic AMP production. The additivity of the response to calcitonin and PGE2 after IAP treatment implies activation of separate pools of adenylate cyclase catalytic subunit by the two hormones. These data are consistent with a model in which calcitonin acts on adenylate cyclase in T 47D cells through stimulatory regulatory components alone, whereas PGE2 acts on the same cells through both stimulatory and inhibitory components. The Ni input can limit the maximum effect of PGE2 and is capable of limiting calcitonin effects when the two agonists are used simultaneously.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983 Feb 25;258(4):2072–2075. [PubMed] [Google Scholar]
- Burns T. W., Langley P. E., Robison G. A. Studies on the role of cyclic AMP in human lipolysis. Adv Cyclic Nucleotide Res. 1972;1:63–85. [PubMed] [Google Scholar]
- Butcher R. W., Baird C. E. Effects of prostaglandins on adenosine 3',5'-monophosphate levels in fat and other tissues. J Biol Chem. 1968 Apr 25;243(8):1713–1717. [PubMed] [Google Scholar]
- Cooper D. M., Schlegel W., Lin M. C., Rodbell M. The fat cell adenylate cyclase system. Characterization and manipulation of its bimodal regulation by GTP. J Biol Chem. 1979 Sep 25;254(18):8927–8931. [PubMed] [Google Scholar]
- Findlay D. M., deLuise M., Michelangeli V. P., Ellison M., Martin T. J. Properties of a calcitonin receptor and adenylate cyclase in BEN cells, a human cancer cell line. Cancer Res. 1980 Apr;40(4):1311–1317. [PubMed] [Google Scholar]
- García-Sáinz J. A. Decreased sensitivity to alpha 2 adrenergic amines, adenosine and prostaglandins in white fat cells from hamsters treated with pertussis vaccine. FEBS Lett. 1981 Apr 20;126(2):306–308. doi: 10.1016/0014-5793(81)80267-0. [DOI] [PubMed] [Google Scholar]
- Giannattasio G., De Ferrari M. E., Spada A. Dopamine-inhibited adenylate cyclase in female rat adenohypophysis. Life Sci. 1981 Apr 6;28(14):1605–1612. doi: 10.1016/0024-3205(81)90315-5. [DOI] [PubMed] [Google Scholar]
- Hazeki O., Ui M. Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J Biol Chem. 1981 Mar 25;256(6):2856–2862. [PubMed] [Google Scholar]
- Heindel J. J., Williams E., Robison G. A., Strada S. J. Inhibition of GH1 rat pituitary tumor cell adenylyl cyclase activity by somatostatin. J Cyclic Nucleotide Res. 1978 Dec;4(6):453–462. [PubMed] [Google Scholar]
- Hildebrandt J. D., Hanoune J., Birnbaumer L. Guanine nucleotide inhibition of cyc- S49 mouse lymphoma cell membrane adenylyl cyclase. J Biol Chem. 1982 Dec 25;257(24):14723–14725. [PubMed] [Google Scholar]
- Jakobs K. H., Aktories K., Schultz G. A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature. 1983 May 12;303(5913):177–178. doi: 10.1038/303177a0. [DOI] [PubMed] [Google Scholar]
- Johnson G. L., Kaslow H. R., Bourne H. R. Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem. 1978 Oct 25;253(20):7120–7123. [PubMed] [Google Scholar]
- Katada T., Ui M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem. 1982 Jun 25;257(12):7210–7216. [PubMed] [Google Scholar]
- Katada T., Ui M. Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J Biol Chem. 1981 Aug 25;256(16):8310–8317. [PubMed] [Google Scholar]
- Lamp S. J., Findlay D. M., Moseley J. M., Martin T. J. Calcitonin induction of a persistent activated state of adenylate cyclase in human breast cancer cells (T 47D). J Biol Chem. 1981 Dec 10;256(23):12269–12274. [PubMed] [Google Scholar]
- Moreno F. J., Mills I., García-Sáinz J. A., Fain J. N. Effects of pertussis toxin treatment on the metabolism of rat adipocytes. J Biol Chem. 1983 Sep 25;258(18):10938–10943. [PubMed] [Google Scholar]
- Northup J. K., Smigel M. D., Sternweis P. C., Gilman A. G. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit. J Biol Chem. 1983 Sep 25;258(18):11369–11376. [PubMed] [Google Scholar]
- Northup J. K., Sternweis P. C., Gilman A. G. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000-dalton (beta) subunit. J Biol Chem. 1983 Sep 25;258(18):11361–11368. [PubMed] [Google Scholar]
- Northup J. K., Sternweis P. C., Smigel M. D., Schleifer L. S., Ross E. M., Gilman A. G. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6516–6520. doi: 10.1073/pnas.77.11.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodan S. B., Insogna K. L., Vignery A. M., Stewart A. F., Broadus A. E., D'Souza S. M., Bertolini D. R., Mundy G. R., Rodan G. A. Factors associated with humoral hypercalcemia of malignancy stimulate adenylate cyclase in osteoblastic cells. J Clin Invest. 1983 Oct;72(4):1511–1515. doi: 10.1172/JCI111108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Schweinsberg P. D., Loo T. L. Simultaneous analysis of ATP, ADP, AMP, and other purines in human erythrocytes by high-performance liquid chromatography. J Chromatogr. 1980 Jan 11;181(1):103–107. doi: 10.1016/s0378-4347(00)81276-1. [DOI] [PubMed] [Google Scholar]
- Suidan H., Tamir A., Tolkovsky A. M. A simple test for enhanced guanyl nucleotide exchange in brain adenylate cyclase systems activated by neurotransmitters. J Biol Chem. 1983 Sep 10;258(17):10524–10529. [PubMed] [Google Scholar]
