Abstract
The stimulatory effect of ferrous salts on the peroxidation of phospholipids can be enhanced by EDTA when the concentration of Fe2+ in the reaction is greater than that of EDTA. Hydroxyl-radical scavengers do not inhibit peroxidation until the concentrations of Fe2+ and EDTA in the reaction are equal. Lipid peroxidation is then substantially initiated by hydroxyl radicals derived from a Fenton-type reaction requiring hydrogen peroxide. Superoxide radicals appear to play some role in the formation of initiating species.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gutteridge J. M., Beard A. P., Quinlan G. J. Superoxide-dependent lipid peroxidation. Problems with the use of catalase as a specific probe for fenton-derived hydroxyl radicals. Biochem Biophys Res Commun. 1983 Dec 28;117(3):901–907. doi: 10.1016/0006-291x(83)91681-9. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M., Kerry P. J. Detection by fluorescence of peroxides and carbonyls in samples of arachidonic acid. Br J Pharmacol. 1982 Jul;76(3):459–461. doi: 10.1111/j.1476-5381.1982.tb09240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M., Quinlan G. J. Malondialdehyde formation from lipid peroxides in the thiobarbituric acid test: the role of lipid radicals, iron salts, and metal chelators. J Appl Biochem. 1983 Aug-Oct;5(4-5):293–299. [PubMed] [Google Scholar]
- Gutteridge J. M., Richmond R., Halliwell B. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J. 1979 Nov 15;184(2):469–472. doi: 10.1042/bj1840469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M. The measurement of malondialdehyde in peroxidised ox-brain phospholipid liposomes. Anal Biochem. 1977 Sep;82(1):76–82. doi: 10.1016/0003-2697(77)90136-1. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M. The protective action of superoxide dismutase on metal-ion catalysed peroxidation of phospholipids. Biochem Biophys Res Commun. 1977 Jul 11;77(1):379–386. doi: 10.1016/s0006-291x(77)80208-8. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts. FEBS Lett. 1982 Dec 27;150(2):454–458. doi: 10.1016/0014-5793(82)80788-6. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. doi: 10.1016/0014-5793(81)80114-7. [DOI] [PubMed] [Google Scholar]
- Searle A. J., Willson R. L. Stimulation of microsomal lipid peroxidation by iron and cysteine. Characterization and the role of free radicals. Biochem J. 1983 Jun 15;212(3):549–554. doi: 10.1042/bj2120549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tien M., Morehouse L. A., Bucher J. R., Aust S. D. The multiple effects of ethylenediaminetetraacetate in several model lipid peroxidation systems. Arch Biochem Biophys. 1982 Oct 15;218(2):450–458. doi: 10.1016/0003-9861(82)90367-8. [DOI] [PubMed] [Google Scholar]
- WILLS E. D. MECHANISMS OF LIPID PEROXIDE FORMATION IN TISSUES. ROLE OF METALS AND HAEMATIN PROTEINS IN THE CATALYSIS OF THE OXIDATION UNSATURATED FATTY ACIDS. Biochim Biophys Acta. 1965 Apr 5;98:238–251. doi: 10.1016/0005-2760(65)90118-9. [DOI] [PubMed] [Google Scholar]
- Wills E. D. Lipid peroxide formation in microsomes. The role of non-haem iron. Biochem J. 1969 Jun;113(2):325–332. doi: 10.1042/bj1130325. [DOI] [PMC free article] [PubMed] [Google Scholar]
