Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Dec 15;224(3):779–786. doi: 10.1042/bj2240779

Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration.

L Hue, F Sobrino, L Bosca
PMCID: PMC1144513  PMID: 6240979

Abstract

Incubation of isolated rat hepatocytes from fasted rats with 0-6 mM-glucose caused an increase in [fructose 2,6-bisphosphate] (0.2 to about 5 nmol/g) without net lactate production. A release of 3H2O from [3-3H]glucose was, however, detectable, indicating that phosphofructokinase was active and that cycling occurred between fructose 6-phosphate and fructose 1,6-bisphosphate. A relationship between [fructose 2,6-bisphosphate] and lactate production was observed when hepatocytes were incubated with [glucose] greater than 6 mM. Incubation with glucose caused a dose-dependent increase in [hexose 6-phosphates]. The maximal capacity of liver cytosolic proteins to bind fructose 2,6-bisphosphate was 15 nmol/g, with affinity constants of 5 X 10(6) and 0.5 X 10(6) M-1. One can calculate that, at 5 microM, more than 90% of fructose 2,6-bisphosphate is bound to cytosolic proteins. In livers of non-anaesthetized fasted mice, the activation of glycogen synthase was more sensitive to glucose injection than was the increase in [fructose 2,6-bisphosphate], whereas the opposite situation was observed in livers of fed mice. Glucose injection caused no change in the activity of liver phosphofructokinase-2 and decreased the [hexose 6-phosphates] in livers of fed mice.

Full text

PDF
779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartrons R., Hue L., Van Schaftingen E., Hers H. G. Hormonal control of fructose 2,6-bisphosphate concentration in isolated rat hepatocytes. Biochem J. 1983 Sep 15;214(3):829–837. doi: 10.1042/bj2140829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunengraber H., Boutry M., Lowenstein J. M. Fatty acid and 3- -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem. 1973 Apr 25;248(8):2656–2669. [PubMed] [Google Scholar]
  4. Buschiazzo H., Exton J. H., Park C. R. Effects of glucose on glycogen synthetase, phosphorylase, and glycogen deposition in the perfused rat liver. Proc Natl Acad Sci U S A. 1970 Feb;65(2):383–387. doi: 10.1073/pnas.65.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark D. G., Rognstad R., Katz J. Lipogenesis in rat hepatocytes. J Biol Chem. 1974 Apr 10;249(7):2028–2036. [PubMed] [Google Scholar]
  6. Claus T. H., Schlumpf J. R., El-Maghrabi M. R., Pilkis S. J. Regulation of the phosphorylation and activity of 6-phosphofructo 1-kinase in isolated hepatocytes by alpha-glycerolphosphate and fructose 2,6-bisphosphate. J Biol Chem. 1982 Jul 10;257(13):7541–7548. [PubMed] [Google Scholar]
  7. De Wulf H., Hers H. G. The stimulation of glycogen synthesis and of glycogen synthetase in the liver by the administration of glucose. Eur J Biochem. 1967 Jul;2(1):50–56. doi: 10.1111/j.1432-1033.1967.tb00104.x. [DOI] [PubMed] [Google Scholar]
  8. Hers H. G. The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976;45:167–189. doi: 10.1146/annurev.bi.45.070176.001123. [DOI] [PubMed] [Google Scholar]
  9. Hers H. G., Van Schaftingen E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J. 1982 Jul 15;206(1):1–12. doi: 10.1042/bj2060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hue L., Blackmore P. F., Exton J. H. Fructose 2,6-bisphosphate. Hormonal regulation and mechanism of its formation in liver. J Biol Chem. 1981 Sep 10;256(17):8900–8903. [PubMed] [Google Scholar]
  11. Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hue L., Felíu J. E., Hers H. G. Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes. A parallel study of the effect of phenylephrine and of glucagon. Biochem J. 1978 Dec 15;176(3):791–797. doi: 10.1042/bj1760791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hue L., Hers H. G. On the use of (3H, 14C)labelled glucose in the study of the so-called "futile cycles" in liver and muscle. Biochem Biophys Res Commun. 1974 Jun 4;58(3):532–539. doi: 10.1016/s0006-291x(74)80453-5. [DOI] [PubMed] [Google Scholar]
  14. Hue L. Role of fructose 2,6-bisphosphate in the stimulation of glycolysis by anoxia in isolated hepatocytes. Biochem J. 1982 Aug 15;206(2):359–365. doi: 10.1042/bj2060359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hue L. The role of futile cycles in the regulation of carbohydrate metabolism in the liver. Adv Enzymol Relat Areas Mol Biol. 1981;52:247–331. doi: 10.1002/9780470122976.ch4. [DOI] [PubMed] [Google Scholar]
  16. Katz J., Rognstad R. Futile cycles in the metabolism of glucose. Curr Top Cell Regul. 1976;10:237–289. doi: 10.1016/b978-0-12-152810-2.50013-9. [DOI] [PubMed] [Google Scholar]
  17. Katz J., Wals P. A., Golden S., Rognstad R. Recycling of glucose by rat hepatocytes. Eur J Biochem. 1975 Dec 1;60(1):91–101. doi: 10.1111/j.1432-1033.1975.tb20979.x. [DOI] [PubMed] [Google Scholar]
  18. Katz J., Wals P. A., Rognstad R. Glucose phosphorylation, glucose-6-phosphatase, and recycling in rat hepatocytes. J Biol Chem. 1978 Jul 10;253(13):4530–4536. [PubMed] [Google Scholar]
  19. Kitajima S., Uyeda K. A binding study of the interaction of beta-D-fructose 2,6-bisphosphate with phosphofructokinase and fructose-1,6-bisphosphatase. J Biol Chem. 1983 Jun 25;258(12):7352–7357. [PubMed] [Google Scholar]
  20. McGrane M. M., El-Maghrabi M. R., Pilkis S. J. The interaction of fructose 2,6-bisphosphate and AMP with rat hepatic fructose 1,6-bisphosphatase. J Biol Chem. 1983 Sep 10;258(17):10445–10454. [PubMed] [Google Scholar]
  21. Newgard C. B., Hirsch L. J., Foster D. W., McGarry J. D. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. A direct or an indirect pathway? J Biol Chem. 1983 Jul 10;258(13):8046–8052. [PubMed] [Google Scholar]
  22. Newgard C. B., Moore S. V., Foster D. W., McGarry J. D. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway. J Biol Chem. 1984 Jun 10;259(11):6958–6963. [PubMed] [Google Scholar]
  23. Nordlie R. C., Sukalski K. A., Alvares F. L. Responses of glucose 6-phosphate levels to varied glucose loads in the isolated perfused rat liver. J Biol Chem. 1980 Mar 10;255(5):1834–1838. [PubMed] [Google Scholar]
  24. Pilkis S. J., El-Maghrabi M. R., Pilkis J., Claus T. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. J Biol Chem. 1981 Apr 25;256(8):3619–3622. [PubMed] [Google Scholar]
  25. Pompon D., Lederer F. A residue critical for flavin binding in flavocytochrome b2 from Baker's yeast. Inactivation and labeling of flavin-free enzyme by 2-keto-3-butynoate. Eur J Biochem. 1982 Dec;129(1):143–147. doi: 10.1111/j.1432-1033.1982.tb07032.x. [DOI] [PubMed] [Google Scholar]
  26. Reinhart G. D., Lardy H. A. Rat liver phosphofructokinase: kinetic activity under near-physiological conditions. Biochemistry. 1980 Apr 1;19(7):1477–1484. doi: 10.1021/bi00548a034. [DOI] [PubMed] [Google Scholar]
  27. Riou J. P., Claus T. H., Flockhart D. A., Corbin J. D., Pilkis S. J. In vivo and in vitro phosphorylation of rat liver fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4615–4619. doi: 10.1073/pnas.74.10.4615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sakakibara R., Kitajima S., Uyeda K. Differences in kinetic properties of phospho and dephospho forms of fructose-6-phosphate, 2-kinase and fructose 2,6-bisphosphatase. J Biol Chem. 1984 Jan 10;259(1):41–46. [PubMed] [Google Scholar]
  29. Stalmans W., De Wulf H., Hue L., Hers H. G. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 1974 Jan 3;41(1):127–134. doi: 10.1111/j.1432-1033.1974.tb03252.x. [DOI] [PubMed] [Google Scholar]
  30. Stalmans W. The role of the liver in the homeostasis of blood glucose. Curr Top Cell Regul. 1976;11:51–97. doi: 10.1016/b978-0-12-152811-9.50009-2. [DOI] [PubMed] [Google Scholar]
  31. Van Schaftingen E., Hers H. G. Phosphofructokinase 2: the enzyme that forms fructose 2,6-bisphosphate from fructose 6-phosphate and ATP. Biochem Biophys Res Commun. 1981 Aug 14;101(3):1078–1084. doi: 10.1016/0006-291x(81)91859-3. [DOI] [PubMed] [Google Scholar]
  32. Van Schaftingen E., Hue L., Hers H. G. Control of the fructose-6-phosphate/fructose 1,6-bisphosphate cycle in isolated hepatocytes by glucose and glucagon. Role of a low-molecular-weight stimulator of phosphofructokinase. Biochem J. 1980 Dec 15;192(3):887–895. doi: 10.1042/bj1920887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Schaftingen E., Hue L., Hers H. G. Study of the fructose 6-phosphate/fructose 1,6-bi-phosphate cycle in the liver in vivo. Biochem J. 1980 Oct 15;192(1):263–271. doi: 10.1042/bj1920263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Schaftingen E., Hue L., Hers H. G. Study of the fructose 6-phosphate/fructose 1,6-bi-phosphate cycle in the liver in vivo. Biochem J. 1980 Oct 15;192(1):263–271. doi: 10.1042/bj1920263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van Schaftingen E., Jett M. F., Hue L., Hers H. G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3483–3486. doi: 10.1073/pnas.78.6.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
  37. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  38. Watts C., Malthus R. S. Liver glycogen synthase in rats with a glycogen-storage disorder. The role of glycogen in the regulation of glycogen synthase. Eur J Biochem. 1980;108(1):73–77. doi: 10.1111/j.1432-1033.1980.tb04697.x. [DOI] [PubMed] [Google Scholar]
  39. Woods H. F., Krebs H. A. Lactate production in the perfused rat liver. Biochem J. 1971 Nov;125(1):129–139. doi: 10.1042/bj1250129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. de Wulf H., Hers H. G. The interconversion of liver glycogen synthetase a and b in vitro. Eur J Biochem. 1968 Dec 5;6(4):552–557. doi: 10.1111/j.1432-1033.1968.tb00480.x. [DOI] [PubMed] [Google Scholar]
  41. de Wulf H., Hers H. G. The role of glucose, glucagon and glucocorticoids in the regulation of liver glycogen synthesis. Eur J Biochem. 1968 Dec 5;6(4):558–564. doi: 10.1111/j.1432-1033.1968.tb00481.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES