Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Dec 15;224(3):829–837. doi: 10.1042/bj2240829

Cyanide inhibition of cytochrome c oxidase. A rapid-freeze e.p.r. investigation.

P Jensen, M T Wilson, R Aasa, B G Malmström
PMCID: PMC1144519  PMID: 6098268

Abstract

The inhibition of cytochrome c oxidase by cyanide, starting either with the resting or the pulsed enzyme, was studied by rapid-freeze quenching followed by quantitative e.p.r. It is found that a partial reduction of cytochrome oxidase by transfer of 2 electron equivalents from ferrocytochrome c to cytochrome a and CuA will induce a transition from a closed to an open enzyme conformation, rendering the cytochrome a3-CuB site accessible for cyanide binding, possibly as a bridging ligand. A heterogeneity in the enzyme is observed in that an e.p.r. signal from the cytochrome a3 3+-HCN complex is only found in 20% of the molecules, whereas the remaining cyanide-bound a3-CuB sites are e.p.r.-silent.

Full text

PDF
829

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AASA R., MALMSTROEM B. G., SALTMAN P. THE SPECIFIC BINDING OF IRON(III) AND COPPER(II) TO TRANSFERRIN AND CONALBUMIN. Biochim Biophys Acta. 1963 Sep 24;75:203–222. doi: 10.1016/0006-3002(63)90599-7. [DOI] [PubMed] [Google Scholar]
  2. Aasa R., Albracht P. J., Falk K. E., Lanne B., Vänngard T. EPR signals from cytochrome c oxidase. Biochim Biophys Acta. 1976 Feb 13;422(2):260–272. doi: 10.1016/0005-2744(76)90137-6. [DOI] [PubMed] [Google Scholar]
  3. Antonini E., Brunori M., Colosimo A., Greenwood C., Wilson M. T. Oxygen "pulsed" cytochrome c oxidase: functional properties and catalytic relevance. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3128–3132. doi: 10.1073/pnas.74.8.3128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antonini E., Brunori M., Greenwood C., Malmström B. G., Rotilio G. C. The interaction of cyanide with cytochrome oxidase. Eur J Biochem. 1971 Nov 11;23(2):396–400. doi: 10.1111/j.1432-1033.1971.tb01633.x. [DOI] [PubMed] [Google Scholar]
  5. Brittain T., Greenwood C. Kinetic studies on the binding of cyanide to oxygenated cytochrome c oxidase. Biochem J. 1976 May 1;155(2):453–455. doi: 10.1042/bj1550453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brudvig G. W., Stevens T. H., Morse R. H., Chan S. I. Conformations of oxidized cytochrome c oxidase. Biochemistry. 1981 Jun 23;20(13):3912–3921. doi: 10.1021/bi00516a039. [DOI] [PubMed] [Google Scholar]
  7. CONRAD H., SMITH L. A study of the kinetics of the oxidation of cytochrome c by cytochrome c oxidase. Arch Biochem Biophys. 1956 Aug;63(2):403–413. doi: 10.1016/0003-9861(56)90055-8. [DOI] [PubMed] [Google Scholar]
  8. Downer N. W., Robinson N. C. Characterization of a seventh different subunit of beef heart cytochrome c oxidase. Similarities between the beef heart enzyme and that from other species. Biochemistry. 1976 Jun 29;15(13):2930–2936. doi: 10.1021/bi00658a036. [DOI] [PubMed] [Google Scholar]
  9. Hill B. C., Brittain T., Eglinton D. G., Gadsby P. M., Greenwood C., Nicholls P., Peterson J., Thomson A. J., Woon T. C. Low-spin ferric forms of cytochrome a3 in mixed-ligand and partially reduced cyanide-bound derivatives of cytochrome c oxidase. Biochem J. 1983 Oct 1;215(1):57–66. doi: 10.1042/bj2150057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill B. C., Greenwood C. Kinetic evidence for the re-definition of electron transfer pathways from cytochrome c to O2 within cytochrome oxidase. FEBS Lett. 1984 Jan 30;166(2):362–366. doi: 10.1016/0014-5793(84)80113-1. [DOI] [PubMed] [Google Scholar]
  11. Jensen P., Aasa R., Malmström B. G. Electron redistribution in cytochrome c oxidase during freezing under turnover conditions. FEBS Lett. 1981 Mar 23;125(2):161–164. doi: 10.1016/0014-5793(81)80709-0. [DOI] [PubMed] [Google Scholar]
  12. Johnson M. K., Eglinton D. G., Gooding P. E., Greenwood C., Thomson A. J. Characterization of the partially reduced cyanide-inhibited derivative of cytochrome c oxidase by optical, electron-paramagnetic-resonance and magnetic-circular-dichroism spectroscopy. Biochem J. 1981 Mar 1;193(3):699–708. doi: 10.1042/bj1930699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones G. D., Jones M. G., Wilson M. T., Brunori M., Colosimo A., Sarti P. Reactions of cytochrome c oxidase with sodium dithionite. Biochem J. 1983 Jan 1;209(1):175–182. doi: 10.1042/bj2090175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones M. G., Bickar D., Wilson M. T., Brunori M., Colosimo A., Sarti P. A re-examination of the reactions of cyanide with cytochrome c oxidase. Biochem J. 1984 May 15;220(1):57–66. doi: 10.1042/bj2200057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wilson M. T., Greenwood C., Brunori M., Antonini E. Kinetic studies on the reaction between cytochrome c oxidase and ferrocytochrome c. Biochem J. 1975 Apr;147(1):145–153. doi: 10.1042/bj1470145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wilson M. T., Jensen P., Aasa R., Malmström B. G., Vänngård T. An investigation by e.p.r. and optical spectroscopy of cytochrome oxidase during turnover. Biochem J. 1982 May 1;203(2):483–492. doi: 10.1042/bj2030483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. de Vries S., Albracht S. P. Intensity of highly anisotropic low-spin heme EPR signals. Biochim Biophys Acta. 1979 May 9;546(2):334–340. doi: 10.1016/0005-2728(79)90050-1. [DOI] [PubMed] [Google Scholar]
  18. van Buuren K. J., Nicholis P., van Gelder B. F. Biochemical and biophysical studies on cytochrome aa 3 . VI. Reaction of cyanide with oxidized and reduced enzyme. Biochim Biophys Acta. 1972 Feb 28;256(2):258–276. doi: 10.1016/0005-2728(72)90057-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES