Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jan 1;225(1):267–270. doi: 10.1042/bj2250267

Substrate specificities of the enzymes of the oleate desaturase system from photosynthetic tissue.

D J Murphy, I E Woodrow, K D Mukherjee
PMCID: PMC1144580  PMID: 3977829

Abstract

In the microsomal fraction from young pea (Pisum sativum L.) leaves, the oleoyl moieties from oleoyl-CoA are principally transferred to the sn-2 position of phosphatidylcholine by oleoyl-CoA:1-acyl-lysophosphatidylcholine acyltransferase. The major product of this acyl transfer is 1-palmitoyl(stearoyl)-2-oleoyl phosphatidylcholine. The 1-palmitoyl(stearoyl)-2-oleoyl phosphatidylcholine is subsequently converted into 1-palmitoyl(stearoyl)-2-linoleoyl phosphatidylcholine by the oleate desaturase complex without equilibrating with the bulk membrane phosphatidylcholine pool. Hence, both the acyl transfer to phosphatidylcholine and the subsequent desaturation of oleoyl moieties occur on the sn-2 position of phosphatidylcholine, and there is also a functional coupling of the acyltransferase and oleate desaturase.

Full text

PDF
267

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Diesperger H., Müller C. R., Sandermann H., Jr Rapid isolation of a plant microsomal fraction by Mg2+--precipitation. FEBS Lett. 1974 Jul 15;43(2):155–158. doi: 10.1016/0014-5793(74)80990-7. [DOI] [PubMed] [Google Scholar]
  2. Murphy D. J., Mukherjee K. D., Latzko E. Lipid metabolism in microsomal fraction from photosynthetic tissue. Effects of catalase and hydrogen peroxide on oleate desaturation. Biochem J. 1983 Jul 1;213(1):249–252. doi: 10.1042/bj2130249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Murphy D. J., Mukherjee K. D., Latzko E., Woodrow I. E. Solubilization, purification and kinetic properties of three membrane-bound long-chain acyl-coenzyme-A thioesterases from microsomes of photosynthetic tissue. Eur J Biochem. 1984 Jul 2;142(1):43–48. doi: 10.1111/j.1432-1033.1984.tb08248.x. [DOI] [PubMed] [Google Scholar]
  4. Murphy D. J., Mukherjee K. D., Woodrow I. E. Functional association of a monoacylglycerophosphocholine acyltransferase and the oleoylglycerophosphocholine desaturase in microsomes from developing leaves. Eur J Biochem. 1984 Mar 1;139(2):373–379. doi: 10.1111/j.1432-1033.1984.tb08016.x. [DOI] [PubMed] [Google Scholar]
  5. ROBERTSON A. F., LANDS W. E. Positional specificites in phospholipid hydrolyses. Biochemistry. 1962 Sep;1:804–810. doi: 10.1021/bi00911a012. [DOI] [PubMed] [Google Scholar]
  6. Slack C. R., Roughan P. G., Browse J. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed. Biochem J. 1979 Jun 1;179(3):649–656. doi: 10.1042/bj1790649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Slack C. R., Roughan P. G., Terpstra J. Some properties of a microsomal oleate desaturase from leaves. Biochem J. 1976 Apr 1;155(1):71–80. doi: 10.1042/bj1550071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Stymne S., Appelqvist L. A. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds. Eur J Biochem. 1978 Oct;90(2):223–229. doi: 10.1111/j.1432-1033.1978.tb12594.x. [DOI] [PubMed] [Google Scholar]
  9. Stymne S., Stobart A. K., Glad G. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbon fatty acids and triacylglycerol production in the microsomes of developing safflower seeds. Biochim Biophys Acta. 1983 Jul 12;752(2):198–208. doi: 10.1016/0005-2760(83)90113-3. [DOI] [PubMed] [Google Scholar]
  10. Vijay I. K., Stumpf P. K. Fat metabolism in higher plants. XLVI. Nature of the substrate and the product of oleyl coenzyme A desaturase from Carthamus tinctorius. J Biol Chem. 1971 May 10;246(9):2910–2917. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES