Abstract
Rat hepatocytes were incubated in monolayer culture in modified Leibovitz L-15 medium containing either 10% (v/v) newborn-calf serum or 0.2% (w/v) fatty-acid-poor bovine serum albumin. The addition of 100 nM-dexamethasone increased the activities of both phosphatidate phosphohydrolase and tyrosine aminotransferase by about 3.5-fold after 8h, and these activities continued to rise until at least 24h. Incubating the hepatocytes in the albumin-containing medium with 10 microM- or 100 microM-8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate increased the activities of the phosphohydrolase and aminotransferase by 2.6- and 3.4-fold respectively after 8h. These increases were blocked by actinomycin D. The increases in the activities that were produced by the cyclic AMP analogue and dexamethasone were independent and approximately additive. Insulin when added alone did not alter the phosphohydrolase activity, but it increased the aminotransferase activity by 34%. The dexamethasone-induced increase in the phosphohydrolase activity was completely blocked by 7-144 microM-insulin, whereas that of the aminotransferase was only partly suppressed. Insulin had no significant Effects on the increases in the activities of phosphatidate phosphohydrolase and tyrosine aminotransferase that were produced by the cyclic AMP analogue, but this may be because the analogue is fairly resistant to degradation by the phosphodiesterase. The activity of glycerol kinase was not significantly changed by incubating the hepatocytes with insulin, dexamethasone and the cyclic AMP analogue alone or in combinations. It is proposed that high concentrations of cyclic AMP and glucocorticoids increase the total activity of phosphatidate phosphohydrolase in the liver and provide it with an increased capacity for synthesizing triacylglycerols and very-low-density lipoproteins, which is expressed when the availability of fatty acids is high. There appears to be a co-ordinated hormonal control of triacyglycerol synthesis and gluconeogenesis in diabetes and in metabolic stress to enable the liver to supply other organs with energy.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auberger P., Samson M., Le Cam A. Inhibition of hormonal induction of tyrosine aminotransferase by polyamines in freshly isolated rat hepatocytes. Biochem J. 1983 Sep 15;214(3):679–685. doi: 10.1042/bj2140679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aung Y. L., Ebner K. E. Induction of tyrosine aminotransferase in isolated liver cells. Biochim Biophys Acta. 1969 Sep 30;191(1):161–163. doi: 10.1016/0005-2744(69)90326-x. [DOI] [PubMed] [Google Scholar]
- Barnes D., Sato G. Serum-free cell culture: a unifying approach. Cell. 1980 Dec;22(3):649–655. doi: 10.1016/0092-8674(80)90540-1. [DOI] [PubMed] [Google Scholar]
- Barnett C. A., Wicks W. D. Regulation of phosphoenolpyruvate carboxykinase and tyrosine transaminase in hepatoma cell cultures. I. Effects of glucocorticoids, N 6 ,O 2' -dibutyryl cyclic adenosine 3',5'-monophosphate and insulin in Reuber H35 cells. J Biol Chem. 1971 Dec 10;246(23):7201–7206. [PubMed] [Google Scholar]
- Boctor A., Grossman A. Alteration of tyrosine aminotransferase turnover in rat liver following glucocorticoid administration. J Biol Chem. 1970 Dec 10;245(23):6337–6345. [PubMed] [Google Scholar]
- Bonney R. J., Becker J. E., Walker P. R., Potter V. R. Primary monolayer cultures of adult rat liver parenchymal cells suitable for study of the regulation of enzyme synthesis. In Vitro. 1974 May-Jun;9(6):399–413. doi: 10.1007/BF02615992. [DOI] [PubMed] [Google Scholar]
- Butterwith S. C., Martin A., Brindley D. N. Can phosphorylation of phosphatidate phosphohydrolase by a cyclic AMP-dependent mechanism regulate its activity and subcellular distribution and control hepatic glycerolipid synthesis? Biochem J. 1984 Sep 1;222(2):487–493. doi: 10.1042/bj2220487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cascales C., Mangiapane E. H., Brindley D. N. Oleic acid promotes the activation and translocation of phosphatidate phosphohydrolase from the cytosol to particulate fractions of isolated rat hepatocytes. Biochem J. 1984 May 1;219(3):911–916. doi: 10.1042/bj2190911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernest M. J., Feigelson P. Increase in hepatic tyrosine aminotransferase mRNA during enzyme induction by N6,O2'-dibutyryl cyclic AMP. J Biol Chem. 1978 Jan 25;253(2):319–322. [PubMed] [Google Scholar]
- Evans P. J., Mayer R. J. Degradation of transplanted mitochondrial proteins by hepatocyte monolayers. Biochem J. 1983 Oct 15;216(1):151–161. doi: 10.1042/bj2160151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans P. J., Mayer R. J. Organelle membrane-cell fusion: destruction of transplanted mitochondrial proteins in hepatocyte monolayers. Biochem Biophys Res Commun. 1982 Jul 16;107(1):51–58. doi: 10.1016/0006-291x(82)91668-0. [DOI] [PubMed] [Google Scholar]
- Evans P. J. The regulation of hepatic tyrosine aminotransferase. Biochim Biophys Acta. 1981 Nov 5;677(3-4):433–444. doi: 10.1016/0304-4165(81)90257-9. [DOI] [PubMed] [Google Scholar]
- Gelehrter T. D., Emanuel J. R., Spencer C. J. Induction of tyrosine aminotransferase by dexamethasone, insulin, and serum. Characterization of the induced enzyme. J Biol Chem. 1972 Oct 10;247(19):6197–6203. [PubMed] [Google Scholar]
- Ghosh J. B., Chatterjee A., Mahalanabis D., Das S. Primary care of hyperpyrexia. Evaluation of a simple physical method. Indian Pediatr. 1984 Dec;21(12):951–954. [PubMed] [Google Scholar]
- Granner D., Andreone T., Sasaki K., Beale E. Inhibition of transcription of the phosphoenolpyruvate carboxykinase gene by insulin. Nature. 1983 Oct 6;305(5934):549–551. doi: 10.1038/305549a0. [DOI] [PubMed] [Google Scholar]
- Gurr J. A., Potter V. R. Independent induction of tyrosine aminotransferase activity by dexamethasone and glucagon in isolated rat liver parenchymal cells in suspension and in monolayer culture in serum-free media. Exp Cell Res. 1980 Mar;126(1):237–248. doi: 10.1016/0014-4827(80)90490-5. [DOI] [PubMed] [Google Scholar]
- Ho K. K., Cake M. H., Yeoh G. C., Oliver I. T. Insulin antagonism of glucocorticoid induction of tyrosine aminotransferase in cultured foetal hepatocytes. Eur J Biochem. 1981 Aug;118(1):137–142. doi: 10.1111/j.1432-1033.1981.tb05496.x. [DOI] [PubMed] [Google Scholar]
- Iwasaki Y., Lamar C., Danenberg K., Pitot H. C. Studies on the induction and repression of enzymes in rat liver. Characterization and metabolic regulation of multiple forms of tyrosine aminotransferase. Eur J Biochem. 1973 Apr;34(2):347–357. doi: 10.1111/j.1432-1033.1973.tb02766.x. [DOI] [PubMed] [Google Scholar]
- Jennings R. J., Lawson N., Fears R., Brindley D. N. Stimulation of the activities of phosphatidate phosphohydrolase and tyrosine aminotransferase in rat hepatocytes by glucocorticoids. FEBS Lett. 1981 Oct 12;133(1):119–122. doi: 10.1016/0014-5793(81)80485-1. [DOI] [PubMed] [Google Scholar]
- Kida K., Kobayashi K., Kimura H., Yugari Y. Glycerokinase in rat liver. I. The effect of fat and its components on glycerokinase activity in rat liver. J Biochem. 1973 Feb;73(2):299–306. [PubMed] [Google Scholar]
- Lamb R. G., Bow S. J., Wright T. O. Effects of chronic insulin and glucagon exposure on the biosynthesis of glycerolipids by cultured hepatocytes. J Biol Chem. 1982 Dec 25;257(24):15022–15025. [PubMed] [Google Scholar]
- Lamb R. G., McCue S. B. The effect of fatty acid exposure on the biosynthesis of glycerolipids by cultured hepatocytes. Biochim Biophys Acta. 1983 Oct 11;753(3):356–363. doi: 10.1016/0005-2760(83)90059-0. [DOI] [PubMed] [Google Scholar]
- Lamb R. G., Wood C. K., Landa B. M., Guzelian P. S., Fallon H. J. Studies of the formation and relase of glycerolipids by primary monolayer cultures of adult rat hepatocytes. Biochim Biophys Acta. 1977 Nov 24;489(2):318–329. doi: 10.1016/0005-2760(77)90151-5. [DOI] [PubMed] [Google Scholar]
- Lawson N., Jennings R. J., Fears R., Brindley D. N. Antagonistic effects of insulin on the corticosterone-induced increase of phosphatidate phosphohydrolase activity in isolated rat hepatocytes. FEBS Lett. 1982 Jun 21;143(1):9–12. doi: 10.1016/0014-5793(82)80261-5. [DOI] [PubMed] [Google Scholar]
- Lawson N., Pollard A. D., Jennings R. J., Brindley D. N. Effects of corticosterone and insulin on enzymes of triacylglycerol synthesis in isolated rat hepatocytes. FEBS Lett. 1982 Sep 6;146(1):204–208. doi: 10.1016/0014-5793(82)80736-9. [DOI] [PubMed] [Google Scholar]
- Lehtonen M. A., Savolainen M. J., Hassinen I. E. Hormonal regulation of hepatic soluble phosphatidate phosphohydrolase. Induction by cortisol in vivo and in isolated perfused rat liver. FEBS Lett. 1979 Mar 1;99(1):162–166. doi: 10.1016/0014-5793(79)80270-7. [DOI] [PubMed] [Google Scholar]
- Levitan I. B., Webb T. E. Modification by 8-azaguanine of the effects of hydrocortisone on the induction and inactivation of tyrosine transaminase of rat liver. J Biol Chem. 1969 Jan 25;244(2):341–347. [PubMed] [Google Scholar]
- Lin R. C., Snodgrass P. J. Primary culture of normal adult rat liver cells which maintain stable urea cycle enzymes. Biochem Biophys Res Commun. 1975 May 19;64(2):725–734. doi: 10.1016/0006-291x(75)90380-0. [DOI] [PubMed] [Google Scholar]
- Marston F. A., Pogson C. I. A simple and rapid assay for tyrosine aminotransferase. FEBS Lett. 1977 Nov 15;83(2):277–280. doi: 10.1016/0014-5793(77)81022-3. [DOI] [PubMed] [Google Scholar]
- Martin-Sanz P., Hopewell R., Brindley D. N. Long-chain fatty acids and their acyl-CoA esters cause the translocation of phosphatidate phosphohydrolase from the cytosolic to the microsomal fraction of rat liver. FEBS Lett. 1984 Oct 1;175(2):284–288. doi: 10.1016/0014-5793(84)80752-8. [DOI] [PubMed] [Google Scholar]
- McNamara D. J., Webb T. E. A common component involved in the induction of hepatic tyrosine transaminase by hydrocortisone and glucagon. Biochim Biophys Acta. 1973 Jul 28;313(2):356–362. doi: 10.1016/0304-4165(73)90035-4. [DOI] [PubMed] [Google Scholar]
- McNamara D. J., Webb T. E. Glucagon-mediated changes in the concentration of rat hepatic tyrosine transaminase: an immunochemical analysis. Arch Biochem Biophys. 1974 Aug;163(2):776–783. doi: 10.1016/0003-9861(74)90540-2. [DOI] [PubMed] [Google Scholar]
- Michalopoulos G., Pitot H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res. 1975 Aug;94(1):70–78. doi: 10.1016/0014-4827(75)90532-7. [DOI] [PubMed] [Google Scholar]
- Michalopoulos G., Sattler G. L., Pitot H. C. Hormonal regulation and the effects of glucose on tyrosine aminotransferase activity in adult rat hepatocytes cultured on floating collagen membranes. Cancer Res. 1978 Jun;38(6):1550–1555. [PubMed] [Google Scholar]
- Miller J. P., Beck A. H., Simon L. N., Meyer R. B., Jr Induction of hepatic tyrosine aminotransferase in vivo by derivatives of cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1975 Jan 25;250(2):426–431. [PubMed] [Google Scholar]
- Noguchi T., Diesterhaft M., Granner D. Dibutyryl cyclic AMP increases the amount of functional messenger RNA coding for tyrosine aminotransferase in rat liver. J Biol Chem. 1978 Mar 10;253(5):1332–1335. [PubMed] [Google Scholar]
- Pelech S. L., Pritchard P. H., Brindley D. N., Vance D. E. Fatty acids reverse the cyclic AMP inhibition of triacylglycerol and phosphatidylcholine synthesis in rat hepatocytes. Biochem J. 1983 Oct 15;216(1):129–136. doi: 10.1042/bj2160129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard A. D., Brindley D. N. Effects of vasopressin and corticosterone on fatty acid metabolism and on the activities of glycerol phosphate acyltransferase and phosphatidate phosphohydrolase in rat hepatocytes. Biochem J. 1984 Jan 15;217(2):461–469. doi: 10.1042/bj2170461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roper M. D., Wicks W. D. Evidence for acceleration of the rate of elongation of tyrosine aminotransferase nascent chains by dibutyryl cyclic AMP. Proc Natl Acad Sci U S A. 1978 Jan;75(1):140–144. doi: 10.1073/pnas.75.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saggerson E. D., Greenbaum A. L. The effect of dietary and hormonal conditions on the activities of glycolytic enzymes in rat epididymal adipose tissue. Biochem J. 1969 Nov;115(3):405–417. doi: 10.1042/bj1150405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savage C. R., Jr, Bonney R. J. Extended expression of differentiated function in primary cultures of adult liver parenchymal cells maintained on nitrocellulose filters. I. Induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase. Exp Cell Res. 1978 Jul;114(2):307–315. doi: 10.1016/0014-4827(78)90488-3. [DOI] [PubMed] [Google Scholar]
- Schneider P. B. Activation of bovine liver glycerol kinase by ethanol. Biochim Biophys Acta. 1975 Jul 27;397(1):110–116. doi: 10.1016/0005-2744(75)90184-9. [DOI] [PubMed] [Google Scholar]
- Sorimachi K., Yasumura Y. Regulation of tyrosine aminotransferase by insulin in cultured rat hepatoma cells. J Biochem. 1981 Oct;90(4):1197–1204. doi: 10.1093/oxfordjournals.jbchem.a133572. [DOI] [PubMed] [Google Scholar]
- Spencer C. J., Heaton J. H., Gelehrter T. D., Richardson K. I., Garwin J. L. Insulin selectively slows the degradation rate of tyrosine aminotransferase. J Biol Chem. 1978 Nov 10;253(21):7677–7682. [PubMed] [Google Scholar]
- Voigt J., Wieland T., Sekeris C. E. Initial steps in the induction by glucocorticosteroids of rat liver tryptophan oxygenase and tyrosin aminotransferase. Arch Biochem Biophys. 1978 Nov;191(1):101–109. doi: 10.1016/0003-9861(78)90071-1. [DOI] [PubMed] [Google Scholar]
- Wicks W. D., Barnett C. A., McKibbin J. B. Interaction between hormones and cyclic AMP in regulating specific hepatic enzyme synthesis. Fed Proc. 1974 Apr;33(4):1105–1111. [PubMed] [Google Scholar]
- Wicks W. D., Kenney F. T., Lee K. L. Induction of hepatic enzyme synthesis in vivo by adenosine 3', 5'-monophosphate. J Biol Chem. 1969 Nov 10;244(21):6008–6013. [PubMed] [Google Scholar]