Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jan 15;225(2):509–516. doi: 10.1042/bj2250509

Purification and properties of a protein activator of phosphorylated branched-chain 2-oxo acid dehydrogenase complex.

J Espinal, P A Patston, H R Fatania, K S Lau, P J Randle
PMCID: PMC1144617  PMID: 3977842

Abstract

The protein activator of phosphorylated branched-chain 2-oxo acid dehydrogenase complex was purified greater than 1000-fold from extracts of rat liver mitochondria; the specific activity was greater than 1000 units/mg of protein (1 unit gives half-maximum re-activation of 10 munits of phosphorylated complex). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave two bands (Mr 47700 and 35300) indistinguishable from the alpha- and beta-subunits of the branched-chain dehydrogenase component of the complex. On gel filtration (Sephacryl S-300), apparent Mr was 190000. This and other evidence suggests that activator protein is free branched-chain dehydrogenase; this conclusion is provisional until identical amino acid composition of the subunits has been demonstrated. Activator protein (i.e. free branched-chain dehydrogenase) was inhibited (up to 30%) by NaF, whereas branched-chain complex was not inhibited. There was no convincing evidence for interconvertible active and inactive forms of activator protein in rat liver mitochondria. Activator protein was detected in mitochondria from liver (ox, rabbit and rat) and kidney (ox and rat), but not in rat heart or skeletal-muscle mitochondria. In rat liver mitochondrial extracts, branched-chain complex sedimented with the mitochondrial membranes, whereas activator protein remained in the supernatant. Activator protein re-activated phosphorylated (inactive) particulate complex from rat liver mitochondria, but it did not activate dephosphorylated complex. Liver and kidney, but not muscle, mitochondria apparently contain surplus free branched-chain dehydrogenase, which is bound by the complex with lower affinity than is the branched-chain dehydrogenase intrinsic to the complex. It is suggested that this functions as a buffering mechanism to maintain branched-chain complex activity in liver and kidney mitochondria.

Full text

PDF
509

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Damuni Z., Merryfield M. L., Humphreys J. S., Reed L. J. Purification and properties of branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4335–4338. doi: 10.1073/pnas.81.14.4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fatania H. R., Lau K. S., Randle P. J. Activation of phosphorylated branched chain 2-oxoacid dehydrogenase complex. FEBS Lett. 1982 Oct 4;147(1):35–39. doi: 10.1016/0014-5793(82)81006-5. [DOI] [PubMed] [Google Scholar]
  4. Fatania H. R., Lau K. S., Randle P. J. Inactivation of purified ox kidney branched-chain 2-oxoacid dehydrogenase complex by phosphorylation. FEBS Lett. 1981 Sep 28;132(2):285–288. doi: 10.1016/0014-5793(81)81180-5. [DOI] [PubMed] [Google Scholar]
  5. Fatania H. R., Patston P. A., Randle P. J. Dephosphorylation and reactivation of phosphorylated purified ox-kidney branched-chain dehydrogenase complex by co-purified phosphatase. FEBS Lett. 1983 Jul 25;158(2):234–238. doi: 10.1016/0014-5793(83)80585-7. [DOI] [PubMed] [Google Scholar]
  6. Lau K. S., Fatania H. R., Randle P. J. Inactivation of rat liver and kidney branched chain 2-oxoacid dehydrogenase complex by adenosine triphosphate. FEBS Lett. 1981 Apr 6;126(1):66–70. doi: 10.1016/0014-5793(81)81034-4. [DOI] [PubMed] [Google Scholar]
  7. Lau K. S., Fatania H. R., Randle P. J. Regulation of the branched chain 2-oxoacid dehydrogenase kinase reaction. FEBS Lett. 1982 Jul 19;144(1):57–62. doi: 10.1016/0014-5793(82)80568-1. [DOI] [PubMed] [Google Scholar]
  8. Odessey R. Purification of rat kidney branched-chain oxo acid dehydrogenase complex with endogenous kinase activity. Biochem J. 1982 Apr 15;204(1):353–356. doi: 10.1042/bj2040353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Patston P. A., Espinal J., Randle P. J. Effects of diet and of alloxan-diabetes on the activity of branched-chain 2-oxo acid dehydrogenase complex and of activator protein in rat tissues. Biochem J. 1984 Sep 15;222(3):711–719. doi: 10.1042/bj2220711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pettit F. H., Yeaman S. J., Reed L. J. Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4881–4885. doi: 10.1073/pnas.75.10.4881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yeaman S. J., Cook K. G., Boyd R. W., Lawson R. Evidence that the mitochondrial activator of phosphorylated branched-chain 2-oxoacid dehydrogenase complex is the dissociated E1 component of the complex. FEBS Lett. 1984 Jun 25;172(1):38–42. doi: 10.1016/0014-5793(84)80868-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES