Abstract
TSH (thyrotropin)-stimulated human thyroid adenylate cyclase has a biphasic response to Ca2+, being activated by submicromolar Ca2+ (optimum 22nM), with inhibition at higher concentrations. Calmodulin antagonists caused an inhibition of TSH-stimulated adenylate cyclase in a dose-dependent manner. Inhibition of TSH-and TSIg-(thyroid-stimulating immunoglobulins)-stimulated activity was more marked than that of basal, NaF- or forskolin-stimulated activity. This inhibition was not due to a decreased binding of TSH to its receptor. Addition of pure calmodulin to particulate preparations of human non-toxic goitre which had not been calmodulin-depleted had no effect on adenylate cyclase activity. EGTA was ineffective in removing calmodulin from particulate preparations, but treatment with the tervalent metal ion La3+ resulted in a loss of up to 98% of calmodulin activity from these preparations. Addition of La3+ directly to the adenylate cyclase assay resulted in a partial inhibition of TSH- and NaF-stimulated activity, with 50% inhibition produced by 5.1 microM and 4.0 microM-La3+ respectively. Particulate preparations with La3+ showed a decrease of TSH- and NaF-stimulated adenylate cyclase activity (approx. 40-60%). In La3+-treated preparations there was a decrease in sensitivity of TSH-stimulated adenylate cyclase to Ca2+ over a wide range of Ca2+ concentrations, but most markedly in the region of the optimal stimulatory Ca2+ concentration. In particulate preparations from which endogenous calmodulin had been removed by La3+ treatment, the addition of pure calmodulin caused an increase (73 +/- 22%; mean +/- S.E.M., n = 8) in TSH-stimulated thyroid adenylate cyclase activity. This was seen in 8 out of 13 experiments.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amiranoff B. M., Laburthe M. C., Rouyer-Fessard C. M., Demaille J. G., Rosselin G. E. Calmodulin stimulation of adenylate cyclase of intestinal epithelium. Eur J Biochem. 1983 Jan 17;130(1):33–37. doi: 10.1111/j.1432-1033.1983.tb07113.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brostrom C. O., Brostrom M. A., Wolff D. J. Calcium-dependent adenylate cyclase from rat cerebral cortex. Reversible activation by sodium fluoride. J Biol Chem. 1977 Aug 25;252(16):5677–5685. [PubMed] [Google Scholar]
- Brostrom C. O., Wolff D. J. Properties and functions of calmodulin. Biochem Pharmacol. 1981 Jun 15;30(12):1395–1405. doi: 10.1016/0006-2952(81)90358-0. [DOI] [PubMed] [Google Scholar]
- Brostrom M. A., Brotman L. A., Brostrom C. O. Calcium-dependent adenylate cyclase of pituitary tumor cells. Biochim Biophys Acta. 1982 Nov 17;721(3):227–235. doi: 10.1016/0167-4889(82)90073-8. [DOI] [PubMed] [Google Scholar]
- Corps A. N., Hesketh T. R., Metcalfe J. C. Limitations on the use of phenothiazines and local anaesthetics as indicators of calmodulin function in intact cells. FEBS Lett. 1982 Feb 22;138(2):280–284. doi: 10.1016/0014-5793(82)80461-4. [DOI] [PubMed] [Google Scholar]
- Desmedt D. H., Dumont J. E. Regulation of thyroid adenylate cyclase activity by calcium and guanyl nucleotides [proceedings]. Arch Int Physiol Biochim. 1977 Apr;85(2):403–404. [PubMed] [Google Scholar]
- Foreman J. C., Mongar J. L. Dual effect of lanthanum on histamine release from mast cells. Nat New Biol. 1972 Dec 20;240(103):255–256. doi: 10.1038/newbio240255a0. [DOI] [PubMed] [Google Scholar]
- Henquin J. C. Effects of trifluoperazine and pimozide on stimulus-secretion coupling in pancreatic B-cells. Suggestion for a role of calmodulin? Biochem J. 1981 Jun 15;196(3):771–780. doi: 10.1042/bj1960771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humphries H., Dirmikis S. M., Munro D. S. Comparison of human and porcine thyroid membranes for radioreceptor assay of bovine thyrotrophin and thyrotrophin-binding inhibiting immunoglobulins. J Endocrinol. 1982 Jun;93(3):371–380. doi: 10.1677/joe.0.0930371. [DOI] [PubMed] [Google Scholar]
- Hyne R. V., Garbers D. L. Regulation of guinea pig sperm adenylate cyclase by calcium. Biol Reprod. 1979 Dec;21(5):1135–1142. doi: 10.1095/biolreprod21.5.1135. [DOI] [PubMed] [Google Scholar]
- Kakiuchi S., Sobue K., Yamazaki R., Kambayashi J., Sakon M., Kosaki G. Lack of tissue specificity of calmodulin: a rapid and high-yield purification method. FEBS Lett. 1981 Apr 20;126(2):203–207. doi: 10.1016/0014-5793(81)80242-6. [DOI] [PubMed] [Google Scholar]
- Klumpp S., Kleefeld G., Schultz J. E. Calcium/calmodulin-regulated guanylate cyclase of the excitable ciliary membrane from Paramecium. Dissociation of calmodulin by La3+: calmodulin specificity and properties of the reconstituted guanylate cyclase. J Biol Chem. 1983 Oct 25;258(20):12455–12459. [PubMed] [Google Scholar]
- LETTVIN J. Y., PICKARD W. F., MCCULLOCH W. S., PITTS W. A THEORY OF PASSIVE ION FLUX THROUGH AXON MEMBRANES. Nature. 1964 Jun 27;202:1338–1339. doi: 10.1038/2021338a0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MacNeil S., Crawford A., Amirrasooli H., Johnson S., Pollock A., Ollis C., Tomlinson S. Stimulation of hormone-responsive adenylate cyclase activity by a factor present in the cell cytosol. Biochem J. 1980 May 15;188(2):393–400. doi: 10.1042/bj1880393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ofulue A. F., Nijjar M. S. Calmodulin activation of rat lung adenylate cyclase is independent of the cytoplasmic factors modulating the enzyme. Biochem J. 1981 Dec 15;200(3):475–480. doi: 10.1042/bj2000475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollis C. A., MacNeil S., Walker S. W., Brown B. L., Sharrard R. M., Munro D. S., Tomlinson S. A possible role for calmodulin in human thyroid cell metabolism. J Endocrinol. 1983 Nov;99(2):251–260. doi: 10.1677/joe.0.0990251. [DOI] [PubMed] [Google Scholar]
- Piascik M. T., Babich M., Rush M. E. Calmodulin stimulation and calcium regulation of smooth muscle adenylate cyclase activity. J Biol Chem. 1983 Sep 25;258(18):10913–10918. [PubMed] [Google Scholar]
- Pinkus L. M., Sulimovici S., Susser F. I., Roginsky M. S. Involvement of calmodulin in the regulation of adenylate cyclase activity in guinea-pig enterocytes. Biochim Biophys Acta. 1983 Jul 14;762(4):552–559. doi: 10.1016/0167-4889(83)90059-9. [DOI] [PubMed] [Google Scholar]
- Rodesch F., Bogaert C., Dumont J. E. Compartmentalization and movement of calcium in the thyroid. Mol Cell Endocrinol. 1976 Aug-Sep;5(3-4):303–313. doi: 10.1016/0303-7207(76)90092-7. [DOI] [PubMed] [Google Scholar]
- Rodesch F., Bogaert C., Dumont J. E. Stimulation par l'hormone thyréotrope de la mobilisation du calcium thyroïdien. C R Acad Sci Hebd Seances Acad Sci D. 1974 Feb 11;278(7):931–934. [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Tomlinson S., MacNeil S., Walker S. W., Ollis C. A., Merritt J. E., Brown B. L. Calmodulin and cell function. Clin Sci (Lond) 1984 May;66(5):497–507. doi: 10.1042/cs0660497. [DOI] [PubMed] [Google Scholar]
- Willems C., Rocmans P., Dumont J. E. Calcium requirements in the action of thyrotropin on the thyroid. FEBS Lett. 1971 May 20;14(5):323–325. doi: 10.1016/0014-5793(71)80291-0. [DOI] [PubMed] [Google Scholar]
