Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Feb 1;225(3):619–627. doi: 10.1042/bj2250619

Extracellular-matrix synthesis by skeletal muscle in culture. Major secreted collagenous proteins of clonal myoblasts.

R L Beach, J S Rao, B W Festoff
PMCID: PMC1144636  PMID: 2983679

Abstract

We have previously shown that G8-1, a murine clonal skeletal-muscle cell line, produces a substrate-attached extracellular matrix [Beach, Burton, Hendricks & Festoff (1982) J. Biol. Chem. 257, 11437-11442]. To examine further the expression of extracellular-matrix proteins by muscle cells, we have analysed the collagenous proteins secreted by G8-1 myoblasts. We have found that collagens and/or procollagens, corresponding to genetic types I, III and IV (and possibly V), are produced and secreted by G8-1 myoblasts. The major secreted collagenous polypeptides were identified as alpha 1 type I and its precursors by using pulse-chase studies, pepsin and collagenase digestions and CNBr fragmentation. The presence of lesser amounts of the other collagens was determined by immunoprecipitation. These results demonstrate that clonal skeletal-muscle cells, in the absence of fibroblasts and an exogenous collagen substrate, are able to synthesize and secrete several extracellular-matrix collagenous proteins in proportions similar to those which are commonly found in muscle tissue and mixed cultures of muscle cells and fibroblasts.

Full text

PDF
619

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. L., Sobel M. E., Howard B. H., Olden K., Yamada K. M., de Crombrugghe B., Pastan I. Levels of translatable mRNAs for cell surface protein, collagen precursors, and two membrane proteins are altered in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3399–3403. doi: 10.1073/pnas.74.8.3399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avvedimento E., Yamada Y., Lovelace E., Vogeli G., de Crombrugghe B., Pastan I. Decrease in the levels of nuclear RNA precursors for alpha 2 collagen in Rous sarcoma virus transformed fibroblasts. Nucleic Acids Res. 1981 Mar 11;9(5):1123–1131. doi: 10.1093/nar/9.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey A. J., Shellswell G. B., Duance V. C. Identification and change of collagen types in differentiating myoblasts and developing chick muscle. Nature. 1979 Mar 1;278(5699):67–69. doi: 10.1038/278067a0. [DOI] [PubMed] [Google Scholar]
  4. Beach R. L., Burton W. V., Hendricks W. J., Festoff B. W. Extracellular matrix synthesis by skeletal muscle in culture. Proteins and effect of enzyme degradation. J Biol Chem. 1982 Oct 10;257(19):11437–11442. [PubMed] [Google Scholar]
  5. Beach R. L., Kelly P. T., Babitch J. A., Cotman C. W. Identification of myosin in isolated synaptic junctions. Brain Res. 1981 Nov 23;225(1):75–93. doi: 10.1016/0006-8993(81)90319-x. [DOI] [PubMed] [Google Scholar]
  6. Beach R. L., Popiela H., Festoff B. W. The identification of neurotrophic factor as a transferrin. FEBS Lett. 1983 May 30;156(1):151–156. doi: 10.1016/0014-5793(83)80267-1. [DOI] [PubMed] [Google Scholar]
  7. Chiquet M., Eppenberger H. M., Turner D. C. Muscle morphogenesis: Evidence for an organizing function of exogenous fibronectin. Dev Biol. 1981 Dec;88(2):220–235. doi: 10.1016/0012-1606(81)90166-4. [DOI] [PubMed] [Google Scholar]
  8. Christian C. N., Nelson P. G., Peacock J., Nirenberg M. Synapse formation between two clonal cell lines. Science. 1977 May 27;196(4293):995–998. doi: 10.1126/science.193191. [DOI] [PubMed] [Google Scholar]
  9. Crouch E., Bornstein P. Collagen synthesis by human amniotic fluid cells in culture: characterization of a procollagen with three identical proalpha1(I) chains. Biochemistry. 1978 Dec 12;17(25):5499–5509. doi: 10.1021/bi00618a027. [DOI] [PubMed] [Google Scholar]
  10. De la Haba G., Kamali H. M., Tiede D. M. Myogenesis of avian striated muscle in vitro: role of collagen in myofiber formation. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2729–2732. doi: 10.1073/pnas.72.7.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deak S. B., Nicholls A., Pope F. M., Prockop D. J. The molecular defect in a nonlethal variant of osteogenesis imperfecta. Synthesis of pro-alpha 2(I) chains which are not incorporated into trimers of type I procollagen. J Biol Chem. 1983 Dec 25;258(24):15192–15197. [PubMed] [Google Scholar]
  12. Duance V. C., Black C. M., Dubowitz V., Hughes G. R., Bailey A. J. Polymyositis--an immunofluorescence study on the distribution of collagen types. Muscle Nerve. 1980 Nov-Dec;3(6):487–490. doi: 10.1002/mus.880030605. [DOI] [PubMed] [Google Scholar]
  13. Duance V. C., Restall D. J., Beard H., Bourne F. J., Bailey A. J. The location of three collagen types in skeletal muscle. FEBS Lett. 1977 Jul 15;79(2):248–252. doi: 10.1016/0014-5793(77)80797-7. [DOI] [PubMed] [Google Scholar]
  14. Duance V. C., Stephens H. R., Dunn M., Bailey A. J., Dubowitz V. A role for collagen in the pathogenesis of muscular dystrophy? Nature. 1980 Apr 3;284(5755):470–472. doi: 10.1038/284470a0. [DOI] [PubMed] [Google Scholar]
  15. Duksin D., Kalcheim C., Vogel Z. Characterization and localization of collagens synthesized by cultured muscle cells stimulated with collagen-inducing factor from embryonic brain extracts. J Biol Chem. 1983 Dec 10;258(23):14585–14591. [PubMed] [Google Scholar]
  16. Ehrismann R., Chiquet M., Turner D. C. Mode of action of fibronectin in promoting chicken myoblast attachment. Mr = 60,000 gelatin-binding fragment binds native fibronectin. J Biol Chem. 1981 Apr 25;256(8):4056–4062. [PubMed] [Google Scholar]
  17. Fessler J. H., Fessler L. I. Biosynthesis of procollagen. Annu Rev Biochem. 1978;47:129–162. doi: 10.1146/annurev.bi.47.070178.001021. [DOI] [PubMed] [Google Scholar]
  18. Fessler L. I., Robinson W. J., Fessler J. H. Biosynthesis of procollagen [(pro alpha 1 V)2 (pro alpha 2 V)] by chick tendon fibroblasts and procollagen (pro alpha 1 V)3 by hamster lung cell cultures. J Biol Chem. 1981 Sep 25;256(18):9646–9651. [PubMed] [Google Scholar]
  19. Fujii K., Murota K. Isolation of skeletal muscle collagen. Anal Biochem. 1982 Dec;127(2):449–452. doi: 10.1016/0003-2697(82)90202-0. [DOI] [PubMed] [Google Scholar]
  20. Garrels J. I. Changes in protein synthesis during myogenesis in a clonal cell line. Dev Biol. 1979 Nov;73(1):134–152. doi: 10.1016/0012-1606(79)90143-x. [DOI] [PubMed] [Google Scholar]
  21. Hauschka S. D., Konigsberg I. R. The influence of collagen on the development of muscle clones. Proc Natl Acad Sci U S A. 1966 Jan;55(1):119–126. doi: 10.1073/pnas.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jimenez S. A., Bashey R. I., Benditt M., Yankowski R. Identification of collagen alpha1(I) trimer in embryonic chick tendons and calvaria. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1354–1361. doi: 10.1016/0006-291x(77)91441-3. [DOI] [PubMed] [Google Scholar]
  23. Ketley J. N., Orkin R. W., Martin G. R. Collagen in developing chick muscle in vivo and in vitro. Exp Cell Res. 1976 May;99(2):261–268. doi: 10.1016/0014-4827(76)90582-6. [DOI] [PubMed] [Google Scholar]
  24. Krieg T., Timpl R., Alitalo K., Kurkinen M., Vaheri A. Type III procollagen is the major collageneous component produced by a continuous rhabdomyosarcoma cell line. FEBS Lett. 1979 Aug 15;104(2):405–409. doi: 10.1016/0014-5793(79)80863-7. [DOI] [PubMed] [Google Scholar]
  25. Kundu K. K., Thompson E. J., Yasin R. Collagen synthesis and secretion by developing human foetal muscle cells in culture. Biochem Soc Trans. 1981 Feb;9(1):76–77. doi: 10.1042/bst0090076. [DOI] [PubMed] [Google Scholar]
  26. Kühl U., Timpl R., von der Mark K. Synthesis of type IV collagen and laminin in cultures of skeletal muscle cells and their assembly on the surface of myotubes. Dev Biol. 1982 Oct;93(2):344–354. doi: 10.1016/0012-1606(82)90122-1. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Lipton B. H. Collagen synthesis by normal and bromodeoxyuridine-modulated cells in myogenic culture. Dev Biol. 1977 Dec;61(2):153–165. doi: 10.1016/0012-1606(77)90288-3. [DOI] [PubMed] [Google Scholar]
  29. Marsilio E., Sobel M. E., Smith B. D. Absence of procollagen alpha 2(I) mRNA in chemically transformed rat liver epithelial cells. J Biol Chem. 1984 Feb 10;259(3):1401–1404. [PubMed] [Google Scholar]
  30. Mayne R., Vail M. S., Miller E. J. Analysis of changes in collagen biosynthesis that occur when chick chondrocytes are grown in 5-bromo-2'-deoxyuridine. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4511–4515. doi: 10.1073/pnas.72.11.4511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Munksgaard E. C., Rhodes M., Mayne R., Butler W. T. Collagen synthesis and secretion by rat incisor odontoblasts in organ culture. Eur J Biochem. 1978 Jan 16;82(2):609–617. doi: 10.1111/j.1432-1033.1978.tb12057.x. [DOI] [PubMed] [Google Scholar]
  32. Noble M. D., Brown T. H., Peacock J. H. Regulation of acetylcholine receptor levels by a cholinergic agonist in mouse muscle cell cultures. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3488–3492. doi: 10.1073/pnas.75.7.3488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Popiela H., Ellis S., Festoff B. W. Dose-dependent initiation of myogenesis by neurotrophic factor. J Neurosci Res. 1982;8(2-3):547–567. doi: 10.1002/jnr.490080240. [DOI] [PubMed] [Google Scholar]
  34. Puri E. C., Caravatti M., Perriard J. C., Turner D. C., Eppenberger H. M. Anchorage-independent muscle cell differentiation. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5297–5301. doi: 10.1073/pnas.77.9.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Romstedt K., Beach R. L., Festoff B. W. Acetylcholine receptor turnover in clonal muscle cells: role of plasmin and effects of protease inhibitors. Muscle Nerve. 1983 May;6(4):283–290. doi: 10.1002/mus.880060407. [DOI] [PubMed] [Google Scholar]
  36. Rowe D. W., Moen R. C., Davidson J. M., Byers P. H., Bornstein P., Palmiter R. D. Correlation of procollagen mRNA levels in normal and transformed chick embryo fibroblasts with different rates of procollagen synthesis. Biochemistry. 1978 May 2;17(9):1581–1590. doi: 10.1021/bi00602a001. [DOI] [PubMed] [Google Scholar]
  37. Sage H., Bornstein P. Preparation and characterization of procollagens and procollagen-collagen intermediates. Methods Enzymol. 1982;82(Pt A):96–127. doi: 10.1016/0076-6879(82)82061-2. [DOI] [PubMed] [Google Scholar]
  38. Sandmeyer S., Gallis B., Bornstein P. Coordinate transcriptional regulation of type I procollagen genes by Rous sarcoma virus. J Biol Chem. 1981 May 25;256(10):5022–5028. [PubMed] [Google Scholar]
  39. Sasse J., von der Mark H., Kühl U., Dessau W., von der Mark K. Origin of collagen types I, III, and V in cultures of avian skeletal muscle. Dev Biol. 1981 Apr 15;83(1):79–89. doi: 10.1016/s0012-1606(81)80010-3. [DOI] [PubMed] [Google Scholar]
  40. Schubert D., Tarikas H., Humphreys S., Heinemann S., Patrick J. Protein synthesis and secretion in a myogenic cell line. Dev Biol. 1973 Jul;33(1):18–37. doi: 10.1016/0012-1606(73)90161-9. [DOI] [PubMed] [Google Scholar]
  41. Sobel M. R., Yamamoto T., de Crombrugghe B., Pastan I. Regulation or procollagen messenger ribonucleic acid levels in Rous sarcoma virus transformed chick embryo fibroblasts. Biochemistry. 1981 Apr 28;20(9):2678–2684. doi: 10.1021/bi00512a049. [DOI] [PubMed] [Google Scholar]
  42. Sugiyama H. Multiple forms of acetylcholinesterase in clonal muscle cells. FEBS Lett. 1977 Dec 15;84(2):257–260. doi: 10.1016/0014-5793(77)80701-1. [DOI] [PubMed] [Google Scholar]
  43. Sugiyama H., Yamashita Y., Murakami F. Multiple molecular forms of acetylcholine receptors in cultured skeletal muscle cells: subcellular localization and characterization. J Neurochem. 1982 Oct;39(4):1038–1046. doi: 10.1111/j.1471-4159.1982.tb11494.x. [DOI] [PubMed] [Google Scholar]
  44. Uitto J. Collagen polymorphism: isolation and partial characterization of alpha 1(I)-trimer molecules in normal human skin. Arch Biochem Biophys. 1979 Feb;192(2):371–379. doi: 10.1016/0003-9861(79)90105-x. [DOI] [PubMed] [Google Scholar]
  45. Walsh F. S., Phillips E. Specific changes in cellular glycoproteins and surface proteins during myogenesis in clonal muscle cells. Dev Biol. 1981 Jan 30;81(2):229–237. doi: 10.1016/0012-1606(81)90286-4. [DOI] [PubMed] [Google Scholar]
  46. Wong G. L., Cohn D. V. Target cells in bone for parathormone and calcitonin are different: enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3167–3171. doi: 10.1073/pnas.72.8.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yaoita H., Foidart J. M., Katz S. I. Localization of the collagenous component in skin basement membrane. J Invest Dermatol. 1978 Apr;70(4):191–193. doi: 10.1111/1523-1747.ep12541313. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES