Abstract
Rat cortical synaptosomes responded to a reduction of external Ca2+ from pCa 3.5 to pCa 4.8 in the absence of MgCl2 with a slight decrease of internal K+ and an increase of Na+. The effects were prevented by tetrodotoxin or millimolar concentrations of MgCl2. Further lowering of external pCa to 7.7 with N-hydroxyethylethylenediaminetriacetate evoked a rapid fall of internal K+, which was specifically blocked by Ruthenium Red; tetrodotoxin and nifedipine were ineffective. A linear relationship was established between K+ and methyltriphenylphosphonium cation distribution ratios by varying external pCa between 4.8 and 7.7, indicating that K+ efflux resulted from a depolarization of the plasma membrane. An increase of Na+ permeability was suggested by the synaptosomes' gain of Na+ and the disappearance of the depolarization in an Na+-free sucrose medium. According to the constant field equation, the permeability ratio PNa/PK increased from 0.029 at pCa4.8 to 0.090 at pCa 7.7 with plasma membrane potentials of -74mV and -47mV, respectively. Since the plasma membrane responded to variation of external Ca2+ activities in the micromolar range with a graded and sustained depolarization, the use of Ca2+ buffers to control membrane potentials is suggested.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerman K. E., Nicholls D. G. Ca2+ transport by intact synaptosomes: the voltage-dependent Ca2+ channel and a re-evaluation of the role of sodium/calcium exchange. Eur J Biochem. 1981 Jul;117(3):491–497. doi: 10.1111/j.1432-1033.1981.tb06364.x. [DOI] [PubMed] [Google Scholar]
- BRINK F. The role of calcium ions in neural processes. Pharmacol Rev. 1954 Sep;6(3):243–298. [PubMed] [Google Scholar]
- Blaustein M. P., Goldring J. M. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol. 1975 Jun;247(3):589–615. doi: 10.1113/jphysiol.1975.sp010949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth R. F., Clark J. B. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J. 1978 Nov 15;176(2):365–370. doi: 10.1042/bj1760365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delamere N. A., Paterson C. A. The influence of calcium-free EGTA solution upon membrane permeability in the crystalline lens of the frog. J Gen Physiol. 1978 May;71(5):581–593. doi: 10.1085/jgp.71.5.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARDOS G. Potassium accumulation in guinea pig brain cortex slices. J Neurochem. 1960 Feb;5:199–201. doi: 10.1111/j.1471-4159.1960.tb13354.x. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
- Hohl C. M., Altschuld R. A., Brierley G. P. Effects of calcium on the permeability of isolated adult rat heart cells to sodium. Arch Biochem Biophys. 1983 Feb 15;221(1):197–205. doi: 10.1016/0003-9861(83)90136-4. [DOI] [PubMed] [Google Scholar]
- KIMIZUKA H., KOKETSU K. CHANGES IN THE MEMBRANE PERMEABILITY OF FROG'S SARTORIUS MUSCLE FIBERS IN CA-FREE EDTA SOLUTION. J Gen Physiol. 1963 Nov;47:379–392. doi: 10.1085/jgp.47.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. The timing of calcium action during neuromuscular transmission. J Physiol. 1967 Apr;189(3):535–544. doi: 10.1113/jphysiol.1967.sp008183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostyuk P. G., Krishtal O. A. Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurones. J Physiol. 1977 Sep;270(3):569–580. doi: 10.1113/jphysiol.1977.sp011969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li P. P., White T. D. Rapid effects of veratridine, tetrodotoxin, gramicidin D, valinomycin and NaCN on the Na+, K+ and ATP contents of synaptosomes. J Neurochem. 1977 May;28(5):967–975. doi: 10.1111/j.1471-4159.1977.tb10658.x. [DOI] [PubMed] [Google Scholar]
- MORRILL G. A., KABACK H. R., ROBBINS E. EFFECT OF CALCIUM ON INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS IN PLANT AND ANIMAL CELLS. Nature. 1964 Nov 14;204:641–642. doi: 10.1038/204641a0. [DOI] [PubMed] [Google Scholar]
- Meech R. W. Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng. 1978;7:1–18. doi: 10.1146/annurev.bb.07.060178.000245. [DOI] [PubMed] [Google Scholar]
- Nicholson C., Bruggencate G. T., Steinberg R., Stöckle H. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1287–1290. doi: 10.1073/pnas.74.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuben J. P., Brandt P. W., Girardier L., Grundfest H. Crayfish muscle: permeability to sodium induced by calcium depletion. Science. 1967 Mar 10;155(3767):1263–1266. doi: 10.1126/science.155.3767.1263. [DOI] [PubMed] [Google Scholar]
- STAMPFLI R., NISHIE K. Effects of calcium-free solutions on membrane-potential of myelinated nerve fibers of the Brazilian frog Leptodactylus ocellatus. Helv Physiol Pharmacol Acta. 1956;14(1):93–104. [PubMed] [Google Scholar]
- Scott I. D., Nicholls D. G. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem J. 1980 Jan 15;186(1):21–33. doi: 10.1042/bj1860021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- White T. D. A role for divalent cations in the uptake of noradrenaline by synaptosomes. J Neurochem. 1975 May;24(5):1037–1042. doi: 10.1111/j.1471-4159.1975.tb03674.x. [DOI] [PubMed] [Google Scholar]
