Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Feb 1;225(3):745–752. doi: 10.1042/bj2250745

Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation in vitro.

M J Kent, N D Light, A J Bailey
PMCID: PMC1144652  PMID: 3919711

Abstract

Rabbit forelimb tendons incubated for 15 or 21 days at 35 degrees C in the presence of 8 or 24 mg of glucose/ml were shown to change their chemical, biochemical and mechanical characteristics. The tendons treated with glucose contained up to three times as much hexosyl-lysine and hexosylhydroxylysine as did control tendons as judged by assay of NaB3H4-reduced samples. Measurement of the force generated on thermal contraction showed significant increases in glycosylated tendons compared with controls, indicating the formation of new covalent stabilizing bonds. This conclusion was supported by the decreased solubility of intact tendons and re-formed fibres glycosylated in vitro, and by the evidence from peptide maps of CNBr-digested glucose-incubated tendons. The latter, when compared with peptide maps of control tendons, revealed the presence of additional high-Mr peptide material. These peptides appear to be cross-linked by a new type of covalent bond stable to mild thermal and chemical treatment. This system in vitro provides a readily controlled model for the study of the chemistry of changes brought about in collagen by non-enzymic glycosylation in diabetes.

Full text

PDF
745

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreassen T. T., Seyer-Hansen K., Bailey A. J. Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. Biochim Biophys Acta. 1981 Oct 12;677(2):313–317. doi: 10.1016/0304-4165(81)90101-x. [DOI] [PubMed] [Google Scholar]
  2. Bailey A. J., Peach C. M., Fowler L. J. Chemistry of the collagen cross-links. Isolation and characterization of two intermediate intermolecular cross-links in collagen. Biochem J. 1970 May;117(5):819–831. doi: 10.1042/bj1170819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey A. J., Robins S. P., Tanner M. J. Reducible components in the proteins of human erythrocyte membrane. Biochim Biophys Acta. 1976 May 20;434(1):51–57. doi: 10.1016/0005-2795(76)90034-9. [DOI] [PubMed] [Google Scholar]
  4. Cerami A., Stevens V. J., Monnier V. M. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus. Metabolism. 1979 Apr;28(4 Suppl 1):431–437. doi: 10.1016/0026-0495(79)90051-9. [DOI] [PubMed] [Google Scholar]
  5. Day J. F., Thorpe S. R., Baynes J. W. Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J Biol Chem. 1979 Feb 10;254(3):595–597. [PubMed] [Google Scholar]
  6. Dolhofer R., Wieland O. H. Glycosylation of serum albumin: elevated glycosyl-albumin in diabetic patients. FEBS Lett. 1979 Jul 15;103(2):282–286. doi: 10.1016/0014-5793(79)81345-9. [DOI] [PubMed] [Google Scholar]
  7. Eble A. S., Thorpe S. R., Baynes J. W. Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J Biol Chem. 1983 Aug 10;258(15):9406–9412. [PubMed] [Google Scholar]
  8. GRANT R. A. ESTIMATION OF HYDROXYPROLINE BY THE AUTOANALYSER. J Clin Pathol. 1964 Nov;17:685–686. doi: 10.1136/jcp.17.6.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gekko K., Koga S. Increased thermal stability of collagen in the presence of sugars and polyols. J Biochem. 1983 Jul;94(1):199–205. doi: 10.1093/oxfordjournals.jbchem.a134330. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Le Pape A., Muh J. P., Bailey A. J. Characterization of N-glycosylated type I collagen in streptozotocin-induced diabetes. Biochem J. 1981 Aug 1;197(2):405–412. doi: 10.1042/bj1970405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Light N. D., Bailey A. J. Changes in crosslinking during aging in bovine tendon collagen. FEBS Lett. 1979 Jan 1;97(1):183–188. doi: 10.1016/0014-5793(79)80080-0. [DOI] [PubMed] [Google Scholar]
  13. Light N. D., Bailey A. J. The chemistry of the collagen cross-links. Purification and characterization of cross-linked polymeric peptide material from mature collagen containing unknown amino acids. Biochem J. 1980 Feb 1;185(2):373–381. doi: 10.1042/bj1850373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Light N. D. Estimation of types I and III collagens in whole tissue by quantitation of CNBr peptides on SDS-polyacrylamide gels. Biochim Biophys Acta. 1982 Mar 18;702(1):30–36. doi: 10.1016/0167-4838(82)90024-3. [DOI] [PubMed] [Google Scholar]
  15. Miller J. A., Gravallese E., Bunn H. F. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J Clin Invest. 1980 Apr;65(4):896–901. doi: 10.1172/JCI109743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pongor S., Ulrich P. C., Bencsath F. A., Cerami A. Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci U S A. 1984 May;81(9):2684–2688. doi: 10.1073/pnas.81.9.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Robins S. P., Bailey A. J. Age-related changes in collagen: the identification of reducible lysine-carbohydrate condensation products. Biochem Biophys Res Commun. 1972 Jul 11;48(1):76–84. doi: 10.1016/0006-291x(72)90346-4. [DOI] [PubMed] [Google Scholar]
  18. Rucklidge G. J., Bates G. P., Robins S. P. Preparation and analysis of the products of non-enzymatic protein glycosylation and their relationship to cross-linking of proteins. Biochim Biophys Acta. 1983 Sep 14;747(1-2):165–170. doi: 10.1016/0167-4838(83)90135-8. [DOI] [PubMed] [Google Scholar]
  19. Schneir M., Bowersox J., Ramamurthy N., Yavelow J., Murray J., Edlin-Folz E., Golub L. Response of rat connective tissues to streptozotocin-diabetes. Tissue-specific effects on collagen metabolism. Biochim Biophys Acta. 1979 Feb 19;583(1):95–102. doi: 10.1016/0304-4165(79)90313-1. [DOI] [PubMed] [Google Scholar]
  20. Stevens V. J., Rouzer C. A., Monnier V. M., Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. doi: 10.1073/pnas.75.6.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Viidik A. An apparatus for the measurement of small tensions. Experientia. 1968 Aug 15;24(8):861–862. doi: 10.1007/BF02144921. [DOI] [PubMed] [Google Scholar]
  22. Yosha S. F., Elden H. R., Rabinovitch A., Mintz D. H., Boucek R. J. Experimental diabetes mellitus and age-simulated changes in intact rat dermal collagen. Diabetes. 1983 Aug;32(8):739–742. doi: 10.2337/diab.32.8.739. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES