Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Feb 1;225(3):761–786. doi: 10.1042/bj2250761

Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate.

M Rabkin, J J Blum
PMCID: PMC1144654  PMID: 3919712

Abstract

Hepatocytes were isolated from the livers of fed rats and incubated, in the presence and absence of 100 nM-glucagon, with a substrate mixture containing glucose (10 mM), fructose (4 mM), alanine (3.5 mM), acetate (1.25 mM), and ribose (1 mM). In any given incubation one substrate was labelled with 14C. Incorporation of 14C into glucose, glycogen, CO2, lactate, alanine, glutamate, lipid glycerol and fatty acids was measured after 20 and 40 min of incubation under quasi-steady-state conditions [Borowitz, Stein & Blum (1977) J. Biol. Chem. 252, 1589-1605]. These data and the measured O2 consumption were analysed with the aid of a structural metabolic model incorporating all reactions of the glycolytic, gluconeogenic, and pentose phosphate pathways, and associated mitochondrial and cytosolic reactions. A considerable excess of experimental measurements over independent flux parameters and a number of independent measurements of changes in metabolite concentrations allowed for a stringent test of the model. A satisfactory fit to the data was obtained for each condition. Significant findings included: control cells were glycogenic and glucagon-treated cells glycogenolytic during the second interval; an ordered (last in, first out) model of glycogen degradation [Devos & Hers (1979) Eur. J. Biochem. 99, 161-167] was required in order to fit the experimental data; the pentose shunt contributed approx. 15% of the carbon for gluconeogenesis in both control and glucagon-treated cells; net flux through the lower Embden-Meyerhof pathway was in the glycolytic direction except during the 20-40 min interval in glucagon-treated cells; the increased gluconeogenesis in response to glucagon was correlated with a decreased pyruvate kinase flux and lactate output; fluxes through pyruvate kinase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase were not coordinately controlled; Krebs cycle activity did not change with glucagon treatment; flux through the malic enzyme was towards pyruvate formation except for control cells during interval II; and 'futile' cycling at each of the five substrate cycles examined (including a previously undescribed cycle at acetate/acetyl-CoA) consumed about 26% of cellular ATP production in control hepatocytes and 21% in glucagon-treated cells.

Full text

PDF
761

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan E. H., Chisholm A. B., Titheradge M. A. Hormonal stimulation of mitochondrial pyruvate carboxylation in filipin-treated hepatocytes. Biochem J. 1983 May 15;212(2):417–426. doi: 10.1042/bj2120417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson N. N., Jr Effects of glucagon and insulin on liver lysosomes. Life Sci. 1980 Jul 14;27(2):95–104. doi: 10.1016/0024-3205(80)90449-x. [DOI] [PubMed] [Google Scholar]
  3. Balaban R. S., Blum J. J. Hormone-induced changes in NADH fluorescence and O2 consumption of rat hepatocytes. Am J Physiol. 1982 Mar;242(3):C172–C177. doi: 10.1152/ajpcell.1982.242.3.C172. [DOI] [PubMed] [Google Scholar]
  4. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birnbaum M. J., Fain J. N. Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines. J Biol Chem. 1977 Jan 25;252(2):528–535. [PubMed] [Google Scholar]
  6. Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borowitz M. J., Stein R. B., Blum J. J. Quantitative analysis of the change of metabolite fluxes along the pentose phosphate and glycolytic pathways in Tetrahymena in response to carbohydrates. J Biol Chem. 1977 Mar 10;252(5):1589–1605. [PubMed] [Google Scholar]
  8. Brand I. A., Söling H. D. Metabolite-controlled phosphorylation of phosphofructokinase in rat hepatocytes. Eur J Biochem. 1982 Feb;122(1):175–181. doi: 10.1111/j.1432-1033.1982.tb05864.x. [DOI] [PubMed] [Google Scholar]
  9. Chan T. M., Bacon C. B., Hill S. A. Glucagon stimulation of liver mitochondrial CO2 fixation utilizing pyruvate generated inside the mitochondria. J Biol Chem. 1979 Sep 25;254(18):8730–8732. [PubMed] [Google Scholar]
  10. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  11. Clark D., Lee D., Rognstad R., Katz J. Futile cycles in isolated perfused rat liver and in isolated rat liver parenchymal cells. Biochem Biophys Res Commun. 1975 Nov 3;67(1):212–219. doi: 10.1016/0006-291x(75)90304-6. [DOI] [PubMed] [Google Scholar]
  12. Craik J. D., Elliott K. R. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes. Biochem J. 1979 Aug 15;182(2):503–508. doi: 10.1042/bj1820503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crawford J. M., Blum J. J. On the use of trace levels of [1-14 C] galactose to estimate cycling between fructose 6-phosphate and fructose diphosphate. Arch Biochem Biophys. 1982 Jun;216(1):42–50. doi: 10.1016/0003-9861(82)90186-2. [DOI] [PubMed] [Google Scholar]
  14. Crawford J. M., Blum J. J. Quantitative analysis of flux along the gluconeogenic, glycolytic and pentose phosphate pathways under reducing conditions in hepatocytes isolated from fed rats. Biochem J. 1983 Jun 15;212(3):585–598. doi: 10.1042/bj2120585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DeRosa G., Swick R. W. Metabolic implications of the distribution of the alanine aminotransferase isoenzymes. J Biol Chem. 1975 Oct 25;250(20):7961–7967. [PubMed] [Google Scholar]
  16. Desbuquois B., Krug F., Cuatrecasas P. Inhibitors of glucagon inactivation. Effect on glucagon--receptor interactions and glucagon-stimulated adenylate cyclase activity in liver cell membranes. Biochim Biophys Acta. 1974 Mar 20;343(1):101–120. doi: 10.1016/0304-4165(74)90242-6. [DOI] [PubMed] [Google Scholar]
  17. Devos P., Hers H. G. A molecular order in the synthesis and degradation of glycogen in the liver. Eur J Biochem. 1979 Aug 15;99(1):161–167. doi: 10.1111/j.1432-1033.1979.tb13242.x. [DOI] [PubMed] [Google Scholar]
  18. Devos P., Hers H. G. Random, presumably hydrolytic, and lysosomal glycogenolysis in the livers of rats treated with phlorizin and of newborn rats. Biochem J. 1980 Oct 15;192(1):177–181. doi: 10.1042/bj1920177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dieterle P., Brawand F., Moser U. K., Walter P. Alanine metabolism in rat liver mitochondria. Eur J Biochem. 1978 Aug 1;88(2):467–473. doi: 10.1111/j.1432-1033.1978.tb12471.x. [DOI] [PubMed] [Google Scholar]
  20. Edmondson J. W., Lumeng L. Biphasic stimulation of amino acid uptake by glucagon in hepatocytes. Biochem Biophys Res Commun. 1980 Sep 16;96(1):61–68. doi: 10.1016/0006-291x(80)91181-x. [DOI] [PubMed] [Google Scholar]
  21. Engström L. The regulation of liver pyruvate kinase by phosphorylation--dephosphorylation. Curr Top Cell Regul. 1978;13:28–51. [PubMed] [Google Scholar]
  22. Exton J. H. Gluconeogenesis. Metabolism. 1972 Oct;21(10):945–990. doi: 10.1016/0026-0495(72)90028-5. [DOI] [PubMed] [Google Scholar]
  23. Fafournoux P., Rémésy C., Demigné C. Control of alanine metabolism in rat liver by transport processes or cellular metabolism. Biochem J. 1983 Mar 15;210(3):645–652. doi: 10.1042/bj2100645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Freidmann B., Goodman E. H., Jr, Saunders H. L., Kostos V., Weinhouse S. An estimation of pyruvate recycling during gluconeogenesis in the perfused rat liver. Arch Biochem Biophys. 1971 Apr;143(2):566–578. doi: 10.1016/0003-9861(71)90241-4. [DOI] [PubMed] [Google Scholar]
  25. Furuya E., Uyeda K. Regulation of phosphofructokinase by a new mechanism. An activation factor binding to phosphorylated enzyme. J Biol Chem. 1980 Dec 25;255(24):11656–11659. [PubMed] [Google Scholar]
  26. Goldberg R. P., Brunengraber H. Contributions of cytosolic and mitochondrial acetyl-CoA syntheses to the activation of lipogenic acetate in rat liver. Adv Exp Med Biol. 1980;132:413–418. doi: 10.1007/978-1-4757-1419-7_41. [DOI] [PubMed] [Google Scholar]
  27. Golden S., Katz J. The determination of reduced nicotinamide-adenine dinucleotide and metabolic intermediates in picomole amounts with bacterial luciferase. Biochem J. 1980 Jun 15;188(3):799–805. doi: 10.1042/bj1880799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Groen A. K., Sips H. J., Vervoorn R. C., Tager J. M. Intracellular compartmentation and control of alanine metabolism in rat liver parenchymal cells. Eur J Biochem. 1982 Feb;122(1):87–93. doi: 10.1111/j.1432-1033.1982.tb05851.x. [DOI] [PubMed] [Google Scholar]
  29. Groot P. H., Scholte H. R., Hülsmann W. C. Fatty acid activation: specificity, localization, and function. Adv Lipid Res. 1976;14:75–126. doi: 10.1016/b978-0-12-024914-5.50009-7. [DOI] [PubMed] [Google Scholar]
  30. Hems R., Saez G. T. Equilibration of metabolic CO2 with preformed CO2 and bicarbonate. An unexpected finding. FEBS Lett. 1983 Mar 21;153(2):438–440. doi: 10.1016/0014-5793(83)80659-0. [DOI] [PubMed] [Google Scholar]
  31. Hers H. G. The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976;45:167–189. doi: 10.1146/annurev.bi.45.070176.001123. [DOI] [PubMed] [Google Scholar]
  32. Hers H. G., Van Schaftingen E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J. 1982 Jul 15;206(1):1–12. doi: 10.1042/bj2060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hopgood M. F., Clark M. G., Ballard F. J. Protein degradation in hepatocyte monolayers. Effects of glucagon, adenosine 3':5'-cyclic monophosphate and insulin. Biochem J. 1980 Jan 15;186(1):71–79. doi: 10.1042/bj1860071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hue L. The role of futile cycles in the regulation of carbohydrate metabolism in the liver. Adv Enzymol Relat Areas Mol Biol. 1981;52:247–331. doi: 10.1002/9780470122976.ch4. [DOI] [PubMed] [Google Scholar]
  35. Janski A. M., Srere P. A., Cornell N. W., Veech R. L. Phosphorylation of ATP citrate lyase in response to glucagon. J Biol Chem. 1979 Oct 10;254(19):9365–9368. [PubMed] [Google Scholar]
  36. Jeffrey P. L., Brown D. H., Brown B. I. Studies of lysosomal alpha-glucosidase. I. Purification and properties of the rat liver enzyme. Biochemistry. 1970 Mar 17;9(6):1403–1415. doi: 10.1021/bi00808a015. [DOI] [PubMed] [Google Scholar]
  37. Jensen C. B., Sistare F. D., Hamman H. C., Haynes R. C., Jr Stimulation of mitochondrial functions by glucagon treatment. Evidence that effects are not artifacts of mitochondrial isolation. Biochem J. 1983 Mar 15;210(3):819–827. doi: 10.1042/bj2100819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. KORNACKER M. S., LOWENSTEIN J. M. CITRATE AND THE CONVERSION OF CARBOHYDRATE INTO FAT. THE ACTIVITIES OF CITRATE-CLEAVAGE ENZYME AND ACETATE THIOKINASE IN LIVERS OF STARVED AND RE-FED RATS. Biochem J. 1965 Jan;94:209–215. doi: 10.1042/bj0940209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Katz J., Golden S., Wals P. A. Stimulation of hepatic glycogen synthesis by amino acids. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3433–3437. doi: 10.1073/pnas.73.10.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Katz J., Rognstad R. Futile cycles in the metabolism of glucose. Curr Top Cell Regul. 1976;10:237–289. doi: 10.1016/b978-0-12-152810-2.50013-9. [DOI] [PubMed] [Google Scholar]
  41. Katz J., Wals P. A., Golden S., Rognstad R. Recycling of glucose by rat hepatocytes. Eur J Biochem. 1975 Dec 1;60(1):91–101. doi: 10.1111/j.1432-1033.1975.tb20979.x. [DOI] [PubMed] [Google Scholar]
  42. Katz J., Wals P. A., Rognstad R. Glucose phosphorylation, glucose-6-phosphatase, and recycling in rat hepatocytes. J Biol Chem. 1978 Jul 10;253(13):4530–4536. [PubMed] [Google Scholar]
  43. Kimmig R., Mauch T. J., Scholz R. Actions of glucagon on flux rates in perfused rat liver. 2. Relationship between inhibition of glycolysis and stimulation of respiration by glucagon. Eur J Biochem. 1983 Nov 15;136(3):617–620. doi: 10.1111/j.1432-1033.1983.tb07785.x. [DOI] [PubMed] [Google Scholar]
  44. Knowles S. E., Jarrett I. G., Filsell O. H., Ballard F. J. Production and utilization of acetate in mammals. Biochem J. 1974 Aug;142(2):401–411. doi: 10.1042/bj1420401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Krebs H. A., Hems R., Lund P., Halliday D., Read W. W. Sources of ammonia for mammalian urea synthesis. Biochem J. 1978 Dec 15;176(3):733–737. doi: 10.1042/bj1760733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  47. Lardy H. A., Merryfield M. L. Ferroactivator and the regulation of gluconeogenesis. Curr Top Cell Regul. 1981;18:243–254. doi: 10.1016/b978-0-12-152818-8.50020-7. [DOI] [PubMed] [Google Scholar]
  48. Levy H. R., Christoff M. A critical appraisal of the effect of oxidized glutathione on hepatic glucose 6-phosphate dehydrogenase activity. Biochem J. 1983 Sep 15;214(3):959–965. doi: 10.1042/bj2140959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lund H., Bremer J. Carnitine acetyltransferase. Effect of malonyl-CoA, fasting and clofibrate feeding in mitochondria from different tissues. Biochim Biophys Acta. 1983 Jan 7;750(1):164–170. doi: 10.1016/0005-2760(83)90216-3. [DOI] [PubMed] [Google Scholar]
  50. Mallette L. E., Exton J. H., Park Effects of glucagon on amino acid transport and utilization in the perfused rat liver. J Biol Chem. 1969 Oct 25;244(20):5724–5728. [PubMed] [Google Scholar]
  51. McGarry J. D., Takabayashi Y., Foster D. W. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J Biol Chem. 1978 Nov 25;253(22):8294–8300. [PubMed] [Google Scholar]
  52. McGivan J. D., Ramsell J. C., Lacey J. H. Stimulation of alanine transport and metabolism by dibutyryl cyclic AMP in the hepatocytes from fed rats. Assessment of transport as a potential rate-limiting step for alanine metabolism. Biochim Biophys Acta. 1981 Jun 22;644(2):295–304. doi: 10.1016/0005-2736(81)90387-4. [DOI] [PubMed] [Google Scholar]
  53. Mendes-Mourāo J., Halestrap A. P., Crisp D. M., Pogson C. I. The involvement of mitochondrial pyruvate transport in the pathways of gluconeogenesis from serine and alanine in isolated rat and mouse liver cells. FEBS Lett. 1975 Apr 15;53(1):29–32. doi: 10.1016/0014-5793(75)80674-0. [DOI] [PubMed] [Google Scholar]
  54. Mörikofer-Zwez S., Stoecklin F. B., Walter P. Fructose 1,6-bisphosphatase in rat liver cytosol: activation after glucagon treatment in vivo and inhibition by fructose 2,6-bisphosphate in vitro. Biochem Biophys Res Commun. 1981 Jul 16;101(1):104–111. doi: 10.1016/s0006-291x(81)80016-2. [DOI] [PubMed] [Google Scholar]
  55. Parry M. J., Walker D. G. Purification and properties of adenosine 5'-triphospae-D-glucose 6-phosphotransferase from rat liver. Biochem J. 1966 May;99(2):266–274. doi: 10.1042/bj0990266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Pettit F. H., Pelley J. W., Reed L. J. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun. 1975 Jul 22;65(2):575–582. doi: 10.1016/s0006-291x(75)80185-9. [DOI] [PubMed] [Google Scholar]
  57. Pilkis S. J., Park C. R., Claus T. H. Hormonal control of hepatic gluconeogenesis. Vitam Horm. 1978;36:383–460. doi: 10.1016/s0083-6729(08)60988-7. [DOI] [PubMed] [Google Scholar]
  58. Prass R. L., Isohashi F., Utter M. F. Purification and characterization of an extramitochondrial acetyl coenzyme A hydrolase from rat liver. J Biol Chem. 1980 Jun 10;255(11):5215–5223. [PubMed] [Google Scholar]
  59. Prpić V., Bygrave F. L. On the inter-relationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria. J Biol Chem. 1980 Jul 10;255(13):6193–6199. [PubMed] [Google Scholar]
  60. RENOLD A. E., HASTINGS A. B., NESBETT F. B. Studies on carbohydrate metabolism in rat liver slices. III. Utilization of glucose and fructose by liver from normal and diabetic animals. J Biol Chem. 1954 Aug;209(2):687–696. [PubMed] [Google Scholar]
  61. ROE J. H., PAPADOPOULOS N. M. The determination of fructose-6-phosphate and fructose-1,6-diphosphate. J Biol Chem. 1954 Oct;210(2):703–707. [PubMed] [Google Scholar]
  62. Rawat A. K., Lundquist F. Influence of thyroxine on the metabolism of ethanol and glycerol in rat liver slices. Eur J Biochem. 1968 Jun;5(1):13–17. doi: 10.1111/j.1432-1033.1968.tb00329.x. [DOI] [PubMed] [Google Scholar]
  63. Richards C. S., Uyeda K. Changes in the concentration of activation factor for phosphofructokinase in hepatocytes in response to glucose and glucagon. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1535–1540. doi: 10.1016/s0006-291x(80)80040-4. [DOI] [PubMed] [Google Scholar]
  64. Rognstad R. Cyclic AMP induced inhibition of pyruvate kinase flux in the intact liver cell. Biochem Biophys Res Commun. 1975 Apr 21;63(4):900–905. doi: 10.1016/0006-291x(75)90653-1. [DOI] [PubMed] [Google Scholar]
  65. Rémésey C., Demigné C., Aufrère J. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J. 1978 Feb 15;170(2):321–329. doi: 10.1042/bj1700321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Scholte H. R., Groot P. H. Organ and intracellular localization of short-chain acyl-CoA synthetases in rat and guinea-pig. Biochim Biophys Acta. 1975 Dec 17;409(3):283–296. doi: 10.1016/0005-2760(75)90024-7. [DOI] [PubMed] [Google Scholar]
  67. Sestoft L., Tonnesen K., Hansen F. V., Damgaard S. E. Fructose and D-glyceraldehyde metabolism in the isolated perfused pig liver. Eur J Biochem. 1972 Nov 7;30(3):542–552. doi: 10.1111/j.1432-1033.1972.tb02125.x. [DOI] [PubMed] [Google Scholar]
  68. Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Siess E. A., Wieland O. H. Early kinetics of glucagon action in isolated hepatocytes at the mitochondrial level. Eur J Biochem. 1980 Sep;110(1):203–210. doi: 10.1111/j.1432-1033.1980.tb04856.x. [DOI] [PubMed] [Google Scholar]
  70. Siess E. A., Wieland O. H. Phosphorylation state of cytosolic and mitochondrial adenine nucleotides and of pyruvate dehydrogenase in isolated rat liver cells. Biochem J. 1976 Apr 15;156(1):91–102. doi: 10.1042/bj1560091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Sillero M. A., Sillero A., Sols A. Enzymes involved in fructose metabolism in lir and the glyceraldehyde metabolic crossroads. Eur J Biochem. 1969 Sep;10(2):345–350. doi: 10.1111/j.1432-1033.1969.tb00696.x. [DOI] [PubMed] [Google Scholar]
  72. Sips H. J., Groen A. K., Tager J. M. Plasma-membrane transport of alanine is rate-limiting for its metabolism in rat-liver parenchymal cells. FEBS Lett. 1980 Oct 6;119(2):271–274. doi: 10.1016/0014-5793(80)80269-9. [DOI] [PubMed] [Google Scholar]
  73. Snell K. Muscle alanine synthesis and hepatic gluconeogenesis. Biochem Soc Trans. 1980 Apr;8(2):205–213. doi: 10.1042/bst0080205. [DOI] [PubMed] [Google Scholar]
  74. Stalmans W. The role of the liver in the homeostasis of blood glucose. Curr Top Cell Regul. 1976;11:51–97. doi: 10.1016/b978-0-12-152811-9.50009-2. [DOI] [PubMed] [Google Scholar]
  75. Stein R. B., Blum J. J. On the analysis of futile cycles in metabolism. J Theor Biol. 1978 Jun 6;72(3):487–522. doi: 10.1016/0022-5193(78)90314-4. [DOI] [PubMed] [Google Scholar]
  76. Studer R. K., Snowdowne K. W., Borle A. B. Regulation of hepatic glycogenolysis by glucagon in male and female rats. Role of cAMP and Ca2+ and interactions between epinephrine and glucagon. J Biol Chem. 1984 Mar 25;259(6):3596–3604. [PubMed] [Google Scholar]
  77. Thomas A. P., Halestrap A. P. Computer stimulation of the effects of alpha-cyano-4-hydroxycinnamate on gluconeogenesis from L-lactate in rat liver cells. Biochem J. 1981 Sep 15;198(3):561–564. doi: 10.1042/bj1980561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Tomera J. F., Goetz P. G., Rand W. M., Brunengraber H. Underestimation of metabolic rates owing to reincorporation of 14CO2 in the perfused rat liver. Biochem J. 1982 Oct 15;208(1):231–234. doi: 10.1042/bj2080231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Topping D. L., Mayes P. A. Effects of fructose concentration on adenine nucleotide concentrations and pyruvate dehydrogenase activity of perfused rat liver [proceedings]. Biochem Soc Trans. 1977;5(4):1001–1002. doi: 10.1042/bst0051001. [DOI] [PubMed] [Google Scholar]
  80. Triebwasser K. C., Freedland R. A. The effect of glucagon on ureagenesis from ammonia by isolated rat hepatocytes. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1159–1165. doi: 10.1016/0006-291x(77)90977-9. [DOI] [PubMed] [Google Scholar]
  81. Uyeda K. Phosphofructokinase. Adv Enzymol Relat Areas Mol Biol. 1979;48:193–244. doi: 10.1002/9780470122938.ch4. [DOI] [PubMed] [Google Scholar]
  82. Van Den Berghe G., Hue L., Hers H. G. Effect of administration of the fructose on the glycogenolytic action of glucagon. An investigation of the pathogeny of hereditary fructose intolerance. Biochem J. 1973 Jun;134(2):637–645. doi: 10.1042/bj1340637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Van Schaftingen E., Hers H. G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc Natl Acad Sci U S A. 1981 May;78(5):2861–2863. doi: 10.1073/pnas.78.5.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Van Schaftingen E., Hue L., Hers H. G. Study of the fructose 6-phosphate/fructose 1,6-bi-phosphate cycle in the liver in vivo. Biochem J. 1980 Oct 15;192(1):263–271. doi: 10.1042/bj1920263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Van den Berghe G. Metabolic effects of fructose in the liver. Curr Top Cell Regul. 1978;13:97–135. doi: 10.1016/b978-0-12-152813-3.50008-2. [DOI] [PubMed] [Google Scholar]
  86. Vandenheede J. R., Keppens S., De Wulf H. The activation of liver phosphorylase b kinase by glucagon. FEBS Lett. 1976 Jan 15;61(2):213–217. doi: 10.1016/0014-5793(76)81040-x. [DOI] [PubMed] [Google Scholar]
  87. Wanders R. J., Meijer A. J., Groen A. K., Tager J. M. Bicarbonate and the pathway of glutamate oxidation in isolated rat-liver mitochondria. Eur J Biochem. 1983 Jun 1;133(1):245–254. doi: 10.1111/j.1432-1033.1983.tb07455.x. [DOI] [PubMed] [Google Scholar]
  88. Wood C. L., Babcock C. J., Blum J. J. Effects of vasopressin on fructose and glycogen metabolism in hepatocytes from fed and fasted rats. Arch Biochem Biophys. 1981 Nov;212(1):43–53. doi: 10.1016/0003-9861(81)90341-6. [DOI] [PubMed] [Google Scholar]
  89. Wood C. L., Blum J. J. Effect of vasoactive intestinal polypeptide on glycogen metabolism in rat hepatocytes. Am J Physiol. 1982 Apr;242(4):E262–E272. doi: 10.1152/ajpendo.1982.242.4.E262. [DOI] [PubMed] [Google Scholar]
  90. Zalitis J., Oliver I. T. Inhibition of glucose phosphate isomerase by metabolic intermediates of fructose. Biochem J. 1967 Mar;102(3):753–759. doi: 10.1042/bj1020753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. van de Werve G., Hue L., Hers H. G. Hormonal and ionic control of the glycogenolytic cascade in rat liver. Biochem J. 1977 Jan 15;162(1):135–142. doi: 10.1042/bj1620135. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES