Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Feb 15;226(1):225–231. doi: 10.1042/bj2260225

Calcium efflux and cycling across the synaptosomal plasma membrane.

R Snelling, D Nicholls
PMCID: PMC1144696  PMID: 3977866

Abstract

Ca2+ efflux from intact synaptosomes is investigated. Net efflux can be induced by returning synaptosomes from media with elevated Ca2+ or high pH to a normal medium. Net Ca2+ efflux is accelerated when the Na+ electrochemical potential gradient is collapsed by veratridine plus ouabain. Under steady-state conditions at 30 degrees C, Ca2+ cycles across the plasma membrane at 0.38 nmol . min-1 . mg-1 of protein. Exchange is increased by 145% by veratridine plus ouabain, both influx and efflux being increased. Increased influx is probably due to activation of voltage-dependent Ca2+ channels, since it is abolished by verapamil. The results indicate that, at least under conditions of low Na+ electrochemical gradient, some pathway other than a Na+/Ca2+ exchange must operate in the plasma membrane to expel Ca2+.

Full text

PDF
225

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Heinonen E. Qualitative measurements of cytosolic calcium ion concentration within isolated guinea pig nerve endings using entrapped arsenazo III. Biochim Biophys Acta. 1983 Jul 13;732(1):117–121. doi: 10.1016/0005-2736(83)90193-1. [DOI] [PubMed] [Google Scholar]
  2. Akerman K. E., Nicholls D. G. ATP depletion increases Ca2+ uptake by synaptosomes. FEBS Lett. 1981 Nov 30;135(1):212–214. doi: 10.1016/0014-5793(81)80979-9. [DOI] [PubMed] [Google Scholar]
  3. Akerman K. E., Nicholls D. G. Ca2+ transport by intact synaptosomes: the voltage-dependent Ca2+ channel and a re-evaluation of the role of sodium/calcium exchange. Eur J Biochem. 1981 Jul;117(3):491–497. doi: 10.1111/j.1432-1033.1981.tb06364.x. [DOI] [PubMed] [Google Scholar]
  4. Akerman K. E., Nicholls D. G. Intrasynaptosomal compartmentation of calcium during depolarization-induced calcium uptake across the plasma membrane. Biochim Biophys Acta. 1981 Jul 6;645(1):41–48. doi: 10.1016/0005-2736(81)90509-5. [DOI] [PubMed] [Google Scholar]
  5. Ashley R. H., Brammer M. J., Marchbanks R. Measurement of intrasynaptosomal free calcium by using the fluorescent indicator quin-2. Biochem J. 1984 Apr 1;219(1):149–158. doi: 10.1042/bj2190149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blaustein M. P., Ector A. C. Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes) in vitro. Biochim Biophys Acta. 1976 Jan 21;419(2):295–308. doi: 10.1016/0005-2736(76)90355-2. [DOI] [PubMed] [Google Scholar]
  7. Blaustein M. P. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol. 1975 Jun;247(3):617–655. doi: 10.1113/jphysiol.1975.sp010950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blaustein M. P., Oborn C. J. The influence of sodium on calcium fluxes in pinched-off nerve terminals in vitro. J Physiol. 1975 Jun;247(3):657–686. doi: 10.1113/jphysiol.1975.sp010951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blaustein M. P., Ratzlaff R. W., Kendrick N. C., Schweitzer E. S. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J Gen Physiol. 1978 Jul;72(1):15–41. doi: 10.1085/jgp.72.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blaustein M. P., Ratzlaff R. W., Schweitzer E. S. Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism. J Gen Physiol. 1978 Jul;72(1):43–66. doi: 10.1085/jgp.72.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caroni P., Villani F., Carafoli E. The cardiotoxic antibiotic doxorubicin inhibits the Na+/Ca2+ exchange of dog heart sarcolemmal vesicles. FEBS Lett. 1981 Aug 3;130(2):184–186. doi: 10.1016/0014-5793(81)81115-5. [DOI] [PubMed] [Google Scholar]
  12. DiPolo R., Beaugé L. Physiological role of ATP-driven calcium pump in squid axon. Nature. 1979 Mar 15;278(5701):271–273. doi: 10.1038/278271a0. [DOI] [PubMed] [Google Scholar]
  13. Duncan C. J. Properties of the Ca(2+)-ATPase activity of mammalian synaptic membrane preparations. J Neurochem. 1976 Nov;27(5):1277–1279. doi: 10.1111/j.1471-4159.1976.tb00344.x. [DOI] [PubMed] [Google Scholar]
  14. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  15. Galper J. B., Catterall W. A. Inhibition of sodium channels by D600. Mol Pharmacol. 1979 Jan;15(1):174–178. [PubMed] [Google Scholar]
  16. Ichida S., Kuo C. H., Matsuda T., Yoshida H. Effects of La+++, Mn++ and ruthenium red on Mg-Ca-ATPase activity and ATP-dependent Ca-binding of the synaptic plasma membrane. Jpn J Pharmacol. 1976 Feb;(1):39–43. doi: 10.1254/jjp.26.39. [DOI] [PubMed] [Google Scholar]
  17. Nicholls D. G. Calcium transport and porton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J. 1978 Mar 15;170(3):511–522. doi: 10.1042/bj1700511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nicholls D. G., Scott I. D. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J. 1980 Mar 15;186(3):833–839. doi: 10.1042/bj1860833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nicholls D., Akerman K. Mitochondrial calcium transport. Biochim Biophys Acta. 1982 Sep 1;683(1):57–88. doi: 10.1016/0304-4173(82)90013-1. [DOI] [PubMed] [Google Scholar]
  20. Rahamimoff H., Abramovitz E. Calcium transport in a vesicular membrane preparation from rat brain synaptosomes. FEBS Lett. 1978 May 15;89(2):223–226. doi: 10.1016/0014-5793(78)80222-1. [DOI] [PubMed] [Google Scholar]
  21. Robinson J. D. Vanadate inhibition of brain (Ca + Mg)-ATPase. Neurochem Res. 1981 Mar;6(3):225–232. doi: 10.1007/BF00964038. [DOI] [PubMed] [Google Scholar]
  22. Schellenberg G. D., Swanson P. D. Solubilization and reconstitution of membranes containing the Na+ -Ca2+ exchange carrier from rat brain. Biochim Biophys Acta. 1982 Aug 25;690(1):133–144. doi: 10.1016/0005-2736(82)90247-4. [DOI] [PubMed] [Google Scholar]
  23. Scott I. D., Akerman K. E., Nicholls D. G. Calcium-ion transport by intact synaptosomes. Intrasynaptosomal compartmentation and the role of the mitochondrial membrane potential. Biochem J. 1980 Dec 15;192(3):873–880. doi: 10.1042/bj1920873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scott I. D., Nicholls D. G. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem J. 1980 Jan 15;186(1):21–33. doi: 10.1042/bj1860021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sobue K., Ichida S., Yoshida H., Yamazaki R., Kakiuchi S. Occurrence of a Ca2+- and modulator protein-activatable ATPase in the synaptic plasma membranes of brain. FEBS Lett. 1979 Mar 1;99(1):199–202. doi: 10.1016/0014-5793(79)80278-1. [DOI] [PubMed] [Google Scholar]
  26. Swanson P. D., Anderson L., Stahl W. L. Uptake of calcium ions by synaptosomes from rat brain. Biochim Biophys Acta. 1974 Jul 31;356(2):174–183. doi: 10.1016/0005-2736(74)90281-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES