Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Mar 1;226(2):551–556. doi: 10.1042/bj2260551

Localization of chloroplastic fatty acid synthesis de novo in the stroma.

K A Walker, J L Harwood
PMCID: PMC1144743  PMID: 3994672

Abstract

The synthesis of fatty acids de novo from [2-14C]malonyl-CoA was studied in fractions from lettuce (Lactuca sativa) and pea (Pisum sativum) chloroplasts. When lettuce chloroplasts were subjected to osmotic lysis, disintegration through a Yeda press and high-speed centrifugation, essentially all of the fatty-acid-synthetic activity was found to be soluble. The distribution of the activity in various chloroplast fractions was similar to that of soluble marker enzymes such as ribulose-1,5-bisphosphate carboxylase and NADP+-linked glyceraldehyde-3-phosphate dehydrogenase. Marked differences were apparent in the quality of products from fatty acid synthesis de novo in the various fractions of chloroplasts. Thus soluble fractions produced predominantly stearate, whereas those containing membranes produced a greater proportion of palmitate. In pea chloroplasts, osmotic lysis released almost all of the fatty acid synthetase into the stromal fraction. In this instance, no major alterations in the products of fatty acid synthesis were observed. The fatty-acid-synthetic activity of the stromal fraction was still soluble after prolonged ultracentrifugation. The results show clearly the soluble nature of fatty acid synthesis de novo in lettuce and pea chloroplasts. Thus fatty acid synthesis measured in microsomal fractions from such plant tissues is not due to the presence of chloroplastic membranes.

Full text

PDF
551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B., Akerlund H. E. Inside-out membrane vesicles isolated from spinach thylakoids. Biochim Biophys Acta. 1978 Sep 7;503(3):462–472. doi: 10.1016/0005-2728(78)90145-7. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baginski E. S., Foà P. P., Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem. 1967 Apr;13(4):326–332. [PubMed] [Google Scholar]
  4. Bolton P., Harwood J. L. Fatty acid biosynthesis by a particulate preparation from germinating pea. Biochem J. 1977 Nov 15;168(2):261–269. doi: 10.1042/bj1680261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byers L. D. Glyceraldehyde-3-phosphate dehydrogenase from yeast. Methods Enzymol. 1982;89(Pt 500):326–335. doi: 10.1016/s0076-6879(82)89059-9. [DOI] [PubMed] [Google Scholar]
  6. Cassagne C., Lessire R. Biosynthesis of saturated very long chain fatty acids by purified membrane fractions from leek epidermal cells. Arch Biochem Biophys. 1978 Nov;191(1):146–152. doi: 10.1016/0003-9861(78)90076-0. [DOI] [PubMed] [Google Scholar]
  7. Heber U., Hallier U. W., Hudson M. A. Untersuchungen zur intrazellulären Verteilungen von Enzymen und Substraten in der Blattzelle. II. Lokalisation von Enzymen des reduktiven und dem oxydativen Pentosephosphat-Zyklus in den Chloroplasten und Permeabilität der Chloroplasten-Membran gegenüber Metaboliten. Z Naturforsch B. 1967 Nov;22(11):1200–1215. [PubMed] [Google Scholar]
  8. Jones A. V., Harwood J. L. Desaturation of linoleic acid from exogenous lipids by isolated chloroplasts. Biochem J. 1980 Sep 15;190(3):851–854. doi: 10.1042/bj1900851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kamienietzky A., Nelson N. Preparation and properties of chloroplasts depleted of chloroplast coupling factor 1 by sodium bromide treatment. Plant Physiol. 1975 Feb;55(2):282–287. doi: 10.1104/pp.55.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kannangara C. G., Jacobson B. S., Stumpf P. K. Fat Metabolism in Higher Plants: LVII. A Comparison of Fatty Acid-Synthesizing Enzymes in Chloroplasts Isolated from Mature and Immature Leaves of Spinach. Plant Physiol. 1973 Aug;52(2):156–161. doi: 10.1104/pp.52.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawashima N., Singh S., Wildman S. G. Reversible cold inactivation and heat reactivation of RuDP carboxylase activity of crystallized tobacco fraction I protein. Biochem Biophys Res Commun. 1971 Feb 19;42(4):664–668. doi: 10.1016/0006-291x(71)90539-0. [DOI] [PubMed] [Google Scholar]
  12. MUDD J. B., McMANUS T. T. Metabolism of acetate by cellfree preparations from spinach leaves. J Biol Chem. 1962 Jul;237:2057–2063. [PubMed] [Google Scholar]
  13. McKeon T. A., Stumpf P. K. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem. 1982 Oct 25;257(20):12141–12147. [PubMed] [Google Scholar]
  14. Miller K. R., Staehelin L. A. Analysis of the thylakoid outer surface. Coupling factor is limited to unstacked membrane regions. J Cell Biol. 1976 Jan;68(1):30–47. doi: 10.1083/jcb.68.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mohan S. B., Kekwick R. G. Acetyl-coenzyme A carboxylase from avocado (Persea americana) plastids and spinach (Spinacia oleracea) chloroplasts. Biochem J. 1980 Jun 1;187(3):667–676. doi: 10.1042/bj1870667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nikolau B. J., Hawke J. C., Slack C. R. Acetyl-coenzyme A carboxylase in maize leaves. Arch Biochem Biophys. 1981 Oct 15;211(2):605–612. doi: 10.1016/0003-9861(81)90495-1. [DOI] [PubMed] [Google Scholar]
  17. Ohlrogge J. B., Kuhn D. N., Stumpf P. K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1194–1198. doi: 10.1073/pnas.76.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roughan P. G., Holland R., Slack C. R. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts. Biochem J. 1979 Nov 15;184(2):193–202. doi: 10.1042/bj1840193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SAUER F., PUGH E. L., WAKIL S. J., DELANEY R., HILL R. L. 2-MERCAPTOETHYLAMINE AND BETA-ALANINE AS COMPONENTS OF ACYL CARRIER PROTEIN. Proc Natl Acad Sci U S A. 1964 Dec;52:1360–1366. doi: 10.1073/pnas.52.6.1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanchez J., Harwood J. L. Products of fatty acid synthesis by a particulate fraction from germinating pea (Pisum sativum L.). Biochem J. 1981 Oct 1;199(1):221–226. doi: 10.1042/bj1990221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanchez J., Jordan B. R., Kay J., Harwood J. L. Lipase-induced alterations of fatty acid synthesis by subcellular fractions from germinating pea (Pisum sativum L.). Biochem J. 1982 May 15;204(2):463–470. doi: 10.1042/bj2040463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
  23. Shimakata T., Stumpf P. K. Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808–5812. doi: 10.1073/pnas.79.19.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weaire P. J., Kekwick R. G. The fractionation of the fatty acid synthetase activities of avocado mesocarp plastids. Biochem J. 1975 Feb;146(2):439–445. doi: 10.1042/bj1460439. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES