Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Mar 1;226(2):613–616. doi: 10.1042/bj2260613

Quin 2: the dissociation constants of its Ca2+ and Mg2+ complexes and its use in a fluorimetric method for determining the dissociation of Ca2+-protein complexes.

D T Bryant
PMCID: PMC1144751  PMID: 3994676

Abstract

Fluorimetric or spectrophotometric titrations with the appropriate cations gave Kd values of 2.9 +/- 0.2 nM and 89 +/- 5 microM respectively for the Ca2+ and Mg2+ complexes of quin 2 at pH 7.5. Mixtures of quin 2 and vitamin D-dependent Ca2+-binding protein from pig duodenum were titrated fluorimetrically with Ca2+ in the absence or presence of Mg2+. These measurements were used with the Kd values of the Ca2+ and Mg2+ complexes of quin 2 to obtain Kd or apparent Kd values for Ca2+-protein complexes ranging from 5 nM to 5 microM with good accuracy.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker W. C., Dayhoff M. O. Evolution of homologous physiological mechanisms based on protein sequence data. Comp Biochem Physiol B. 1979;62(1):1–5. doi: 10.1016/0305-0491(79)90002-6. [DOI] [PubMed] [Google Scholar]
  2. Bryant D. T., Andrews P. A simple procedure for purifying mammalian duodenal Ca2+-binding proteins on a 100 mg scale and an investigation of the stoichiometry of their high-affinity binding of Ca2+ ions. Biochem J. 1983 Jun 1;211(3):709–716. doi: 10.1042/bj2110709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryant D. T., Andrews P. Investigation of the binding of Ca2+, Mg2+, Mn2+ and K+ to the vitamin D-dependent Ca2+-binding protein from pig duodenum. Biochem J. 1984 Apr 1;219(1):287–292. doi: 10.1042/bj2190287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  5. Hofmann T., Kawakami M., Hitchman A. J., Harrison J. E., Dorrington K. J. The amino acid sequence of porcine intestinal calcium-binding protein. Can J Biochem. 1979 Jun;57(6):737–748. doi: 10.1139/o79-092. [DOI] [PubMed] [Google Scholar]
  6. Kim Y. S., Padilla G. M. Determination of free Ca ion concentrations with an ion-selective electrode in the presence of chelating agents in comparison with calculated values. Anal Biochem. 1978 Sep;89(2):521–528. doi: 10.1016/0003-2697(78)90381-0. [DOI] [PubMed] [Google Scholar]
  7. Murakami K., Andree P. J., Berliner L. J. Metal ion binding to alpha-lactalbumin species. Biochemistry. 1982 Oct 26;21(22):5488–5494. doi: 10.1021/bi00265a017. [DOI] [PubMed] [Google Scholar]
  8. Permyakov E. A., Yarmolenko V. V., Kalinichenko L. P., Morozova L. A., Burstein E. A. Calcium binding to alpha-lactalbumin: structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochem Biophys Res Commun. 1981 May 15;100(1):191–197. doi: 10.1016/s0006-291x(81)80081-2. [DOI] [PubMed] [Google Scholar]
  9. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  10. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES