Abstract
Ca2+ transport across mammary-gland Golgi membranes was measured after centrifugation of the membrane vesicles through silicone oil. In the presence of 2.3 microM free Ca2+ the vesicles accumulated 5.8 nmol of Ca2+/mg of protein without added ATP, and this uptake was complete within 0.5 min. In the presence of 1 mM-ATP, Ca2+ was accumulated at a linear rate for 10 min after the precipitation of intravesicular Ca2+ with 10 mM-potassium oxalate. ATP-dependent Ca2+ uptake exhibited a Km of 0.14 microM for Ca2+ and a Vmax. of 3.1 nmol of Ca2+/min per mg of protein. Ca2+-dependent ATP hydrolysis exhibited a Km of 0.16 microM for Ca2+ and a Vmax. of 10.1 nmol of Pi/min per mg of protein. The stoichiometry between ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase varied between 0.3 and 0.7 over the range 0.03-8.6 microM-Ca2+. Both Ca2+ uptake and Ca2+-stimulated ATPase were strongly inhibited by orthovanadate, which suggests that the major mechanism by which Golgi vesicles accumulate Ca2+ is through the action of the Ca2+-stimulated ATPase. However, Ca2+ uptake was also decreased by the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone), indicating that it may occur by other mechanisms too. The effect of CCCP may be related to the existence of transmembrane pH gradients (delta pH) in these vesicles: the addition of 30 microM-CCCP reduced delta pH from a control value of 1.06 to 0.73 pH unit. Golgi vesicles also possess a Ca2+-efflux pathway which operated at an initial rate of 0.5-0.57 nmol/min per mg of protein.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bais R. A rapid and sensitive radiometric assay for adenosine triphosphatase activity using Cerenkov radiation. Anal Biochem. 1975 Jan;63(1):271–273. doi: 10.1016/0003-2697(75)90215-8. [DOI] [PubMed] [Google Scholar]
- Baumrucker C. R., Keenan T. W. Membranes of mammary gland. X. Adenosine triphosphate dependent calcium accumulation by Golgi apparatus rich fractions from bovine mammary gland. Exp Cell Res. 1975 Feb;90(2):253–260. doi: 10.1016/0014-4827(75)90314-6. [DOI] [PubMed] [Google Scholar]
- Burgess G. M., McKinney J. S., Fabiato A., Leslie B. A., Putney J. W., Jr Calcium pools in saponin-permeabilized guinea pig hepatocytes. J Biol Chem. 1983 Dec 25;258(24):15336–15345. [PubMed] [Google Scholar]
- Casey R. P., Njus D., Radda G. K., Sehr P. A. Active proton uptake by chromaffin granules: observation by amine distribution and phosphorus-31 nuclear magnetic resonance techniques. Biochemistry. 1977 Mar 8;16(5):972–977. doi: 10.1021/bi00624a025. [DOI] [PubMed] [Google Scholar]
- Chan K. M., Junger K. D. Calcium transport and phosphorylated intermediate of (Ca2+ + Mg2+)-ATPase in plasma membranes of rat liver. J Biol Chem. 1983 Apr 10;258(7):4404–4410. [PubMed] [Google Scholar]
- Dawson A. P., Fulton D. V. Some properties of the Ca2+-stimulated ATPase of a rat liver microsomal fraction. Biochem J. 1983 Feb 15;210(2):405–410. doi: 10.1042/bj2100405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heaton G. M., Nicholls D. G. The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient. Biochem J. 1976 Jun 15;156(3):635–646. doi: 10.1042/bj1560635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyworth C. M., Neumann E. F., Wynn C. H. The stability and aggregation properties of human liver acid beta-D-galactosidase. Biochem J. 1981 Mar 1;193(3):773–779. doi: 10.1042/bj1930773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodson S. The ATP-dependent concentration of calcium by a Golgi apparatus-rich fraction isolated from rat liver. J Cell Sci. 1978 Apr;30:117–128. doi: 10.1242/jcs.30.1.117. [DOI] [PubMed] [Google Scholar]
- Hoek J. B., Nicholls D. G., Williamson J. R. Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem. 1980 Feb 25;255(4):1458–1464. [PubMed] [Google Scholar]
- Keenan T. W., Morré D. J., Cheetham R. D. Lactose synthesis by a golgi apparatus fraction from rat mammary gland. Nature. 1970 Dec 12;228(5276):1105–1106. doi: 10.1038/2281105a0. [DOI] [PubMed] [Google Scholar]
- Kuhn N. J., White A. The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochem J. 1977 Dec 15;168(3):423–433. doi: 10.1042/bj1680423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michell R. H., Hawthorne J. N. The site of diphosphoinositide synthesis in rat liver. Biochem Biophys Res Commun. 1965 Nov 22;21(4):333–338. doi: 10.1016/0006-291x(65)90198-1. [DOI] [PubMed] [Google Scholar]
- Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
- Pertoft H., Wärmegård B., Hök M. Heterogeneity of lysosomes originating from rat liver parenchymal cells. Metabolic relationship of subpopulations separated by density-gradient centrifugation. Biochem J. 1978 Jul 15;174(1):309–317. doi: 10.1042/bj1740309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Powell J. T., Brew K. Metal ion activation of galactosyltransferase. J Biol Chem. 1976 Jun 25;251(12):3645–3652. [PubMed] [Google Scholar]
- Shears S. B., Kirk C. J. Characterization of a rapid cellular-fractionation technique for hepatocytes. Application in the measurement of mitochondrial membrane potential in situ. Biochem J. 1984 Apr 15;219(2):375–382. doi: 10.1042/bj2190375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shephard E. H., Hübscher G. Phosphatidate biosynthesis in mitochondrial subfractions of rat liver. Biochem J. 1969 Jun;113(2):429–440. doi: 10.1042/bj1130429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storer A. C., Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J. 1976 Oct 1;159(1):1–5. doi: 10.1042/bj1590001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WERKHEISER W. C., BARTLEY W. The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium. Biochem J. 1957 May;66(1):79–91. doi: 10.1042/bj0660079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watters C. D. A Ca2+-stimulated adenosine triphosphatase in Golgi-enriched membranes of lactating murine mammary tissue. Biochem J. 1984 Nov 15;224(1):39–45. doi: 10.1042/bj2240039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West D. W. Energy-dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary glands. Biochim Biophys Acta. 1981 Apr 3;673(4):374–386. doi: 10.1016/0304-4165(81)90469-4. [DOI] [PubMed] [Google Scholar]
- White M. D., Kuhn N. J., Ward S. Permeability of lactating-rat mammary gland Golgi membranes to monosaccharides. Biochem J. 1980 Sep 15;190(3):621–624. doi: 10.1042/bj1900621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White M. D., Ward S., Kuhn N. J. Pore properties of the Golgi membrane from lactating-rat mammary gland. Effects of pH and temperature and reconstitution into phospholipid vesicles. Biochem J. 1984 Jan 1;217(1):297–301. doi: 10.1042/bj2170297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F., Schneider D. L. The bioenergetics of Golgi apparatus function: evidence for an ATP-dependent proton pump. Biochem Biophys Res Commun. 1983 Jul 29;114(2):620–625. doi: 10.1016/0006-291x(83)90825-2. [DOI] [PubMed] [Google Scholar]
- de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]