Abstract
The gel-overlay technique with 125I-labelled calmodulin allowed the detection of several calmodulin-binding proteins of Mr 280 000, 150 000, 97 000, 56 000, 35 000 and 24 000 in canine cardiac sarcoplasmic reticulum. Only two calmodulin-binding proteins could be identified unambiguously. Among them, the 97 000-Mr protein that undergoes phosphorylation in the presence of Ca2+ and calmodulin, is likely to be glycogen phosphorylase. In contrast, the (Ca2+ + Mg2+)-activated ATPase did not appear to bind calmodulin under our experimental conditions. The second known calmodulin target is dephosphophospholamban, which migrates with an apparent Mr of 24 000. The dimeric as well as the monomeric form of phospholamban was found to bind calmodulin. Phospholamban shifts the apparent Kd of erythrocyte (Ca2+ + Mg2+)-activated ATPase for calmodulin, suggesting thus a tight binding of calmodulin to the proteolipid. Interestingly enough, phospholamban phosphorylation by either the catalytic subunit of cyclic AMP-dependent protein kinase or the Ca2+/calmodulin-dependent phospholamban kinase was found to inhibit calmodulin binding.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amphlett G. W., Vanaman T. C., Perry S. V. Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mg2+-stimulated ATPase of skeletal muscle actinomyosin. FEBS Lett. 1976 Dec 15;72(1):163–168. doi: 10.1016/0014-5793(76)80836-8. [DOI] [PubMed] [Google Scholar]
- Autric F., Ferraz C., Kilhoffer M. C., Cavadore J. C., Demaille J. G. Large-scale purification and characterization of calmodulin from ram testis: its metal-ion-dependent conformers. Biochim Biophys Acta. 1980 Aug 1;631(1):139–147. doi: 10.1016/0304-4165(80)90062-8. [DOI] [PubMed] [Google Scholar]
- Campbell K. P., MacLennan D. H. Labeling of high affinity ATP binding sites on the 53,000- and 160,000-dalton glycoproteins of the sarcoplasmic reticulum with the photoaffinity probe 8-N3-[alpha-32P]ATP. J Biol Chem. 1983 Feb 10;258(3):1391–1394. [PubMed] [Google Scholar]
- Capony J. P., Rinaldi M. L., Guilleux F., Demaille J. G. Isolation of cardiac membrane proteolipids by high pressure liquid chromatography. A comparison of reticular and sarcolemmal proteolipids, phospholamban and calciductin. Biochim Biophys Acta. 1983 Feb 9;728(1):83–91. doi: 10.1016/0005-2736(83)90439-x. [DOI] [PubMed] [Google Scholar]
- Conti M. A., Adelstein R. S. The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3':5' cAMP-dependent protein kinase. J Biol Chem. 1981 Apr 10;256(7):3178–3181. [PubMed] [Google Scholar]
- Katz S., Blostein R. Ca-2+-stimulated membrane phosphorylation and ATPase activity of the human erythrocyte. Biochim Biophys Acta. 1975 May 6;389(2):314–324. doi: 10.1016/0005-2736(75)90324-7. [DOI] [PubMed] [Google Scholar]
- Kirchberger M. A., Tada M., Katz A. M. Adenosine 3':5'-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem. 1974 Oct 10;249(19):6166–6173. [PubMed] [Google Scholar]
- Kranias E. G., Bilezikjian L. M., Potter J. D., Piascik M. T., Schwartz A. The role of calmodulin in regulation of cardiac sarcoplasmic reticulum phosphorylation. Ann N Y Acad Sci. 1980;356:279–291. doi: 10.1111/j.1749-6632.1980.tb29618.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Le Peuch C. J., Haiech J., Demaille J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry. 1979 Nov 13;18(23):5150–5157. doi: 10.1021/bi00590a019. [DOI] [PubMed] [Google Scholar]
- Le Peuch C. J., Le Peuch D. A., Demaille J. G. Phospholamban, activator of the cardiac sarcoplasmic reticulum calcium pump. Physicochemical properties and diagonal purification. Biochemistry. 1980 Jul 8;19(14):3368–3373. doi: 10.1021/bi00555a042. [DOI] [PubMed] [Google Scholar]
- Lopaschuk G., Richter B., Katz S. Characterization of calmodulin effects on calcium transport in cardiac microsomes enriched in sarcoplasmic reticulum. Biochemistry. 1980 Nov 25;19(24):5603–5607. doi: 10.1021/bi00565a022. [DOI] [PubMed] [Google Scholar]
- Louis C. F., Jarvis B. Affinity labeling of calmodulin-binding components in canine cardiac sarcoplasmic reticulum. J Biol Chem. 1982 Dec 25;257(24):15187–15191. [PubMed] [Google Scholar]
- Malencik D. A., Anderson S. R. Binding of simple peptides, hormones, and neurotransmitters by calmodulin. Biochemistry. 1982 Jul 6;21(14):3480–3486. doi: 10.1021/bi00257a035. [DOI] [PubMed] [Google Scholar]
- Malencik D. A., Huang T. S., Anderson S. R. Binding of protein kinase substrates by fluorescently labeled calmodulin. Biochem Biophys Res Commun. 1982 Sep 16;108(1):266–272. doi: 10.1016/0006-291x(82)91861-7. [DOI] [PubMed] [Google Scholar]
- Molla A., Cartaud A., Lazaro R., Ozon R. Xenopus lipovitellin, a new target protein for calmodulin. FEBS Lett. 1983 Apr 5;154(1):101–104. doi: 10.1016/0014-5793(83)80883-7. [DOI] [PubMed] [Google Scholar]
- Molla A., Hincke M. T., Katz S., Lazaro R. Azidocalmodulin derivatives. Activation of, and binding to, three target proteins: aorta myosin light-chain kinase, erythrocyte (Mg2+ + Ca2+)-dependent ATPase and cardiac sarcoplasmic-reticulum kinase. Biochem J. 1983 Dec 1;215(3):475–482. doi: 10.1042/bj2150475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliva J. M., de Meis L., Inesi G. Calmodulin stimulates both adenosine 5'-triphosphate hydrolysis and synthesis catalyzed by a cardiac calcium ion dependent adenosinetriphosphatase. Biochemistry. 1983 Dec 6;22(25):5822–5825. doi: 10.1021/bi00294a021. [DOI] [PubMed] [Google Scholar]
- Palfrey H. C., Schiebler W., Greengard P. A major calmodulin-binding protein common to various vertebrate tissues. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3780–3784. doi: 10.1073/pnas.79.12.3780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picton C., Klee C. B., Cohen P. The regulation of muscle phosphorylase kinase by calcium ions, calmodulin and troponin-C. Cell Calcium. 1981 Aug;2(4):281–294. doi: 10.1016/0143-4160(81)90021-x. [DOI] [PubMed] [Google Scholar]
- Plank B., Wyskovsky W., Hellmann G., Suko J. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum. Biochim Biophys Acta. 1983 Jul 13;732(1):99–109. doi: 10.1016/0005-2736(83)90191-8. [DOI] [PubMed] [Google Scholar]
- Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
- Seiler S., Wegener A. D., Whang D. D., Hathaway D. R., Jones L. R. High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Ca2+-activated protease. J Biol Chem. 1984 Jul 10;259(13):8550–8557. [PubMed] [Google Scholar]
- Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
- Tada M., Kirchberger M. A., Katz A. M. Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1975 Apr 10;250(7):2640–2647. [PubMed] [Google Scholar]
- Villar-Palasi C., Oshiro D. L., Kretsinger R. H. Interaction of calmodulin and glycogen phosphorylase. Biochim Biophys Acta. 1983 May 4;757(1):40–46. doi: 10.1016/0304-4165(83)90150-2. [DOI] [PubMed] [Google Scholar]
- Wray H. L., Gray R. R., Olsson R. A. Cyclic adenosine 3',5'-monophosphate-stimulated protein kinase and a substrate associated with cardiac sarcoplasmic reticulum. J Biol Chem. 1973 Feb 25;248(4):1496–1498. [PubMed] [Google Scholar]



