Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Apr 1;227(1):199–203. doi: 10.1042/bj2270199

H+-gradient-dependent active transport of tetraethylammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK1.

K Inui, H Saito, R Hori
PMCID: PMC1144826  PMID: 2986603

Abstract

Transport of [3H]tetraethylammonium (NEt4+), an organic cation, has been studied by using apical-membrane vesicles isolated from cultured kidney epithelial cell line LLC-PK1. The uptake of NEt4+ by apical-membrane vesicles was osmotically sensitive, time-dependent and saturable. The presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of NEt4+ uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by HgCl2. These results suggest that apical membranes isolated from the LLC-PK1 cells retain the transport characteristics of NEt4+ similar to those observed in renal brush-border membranes.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biber J., Brown C. D., Murer H. Sodium-dependent transport of phosphate in LLC-PK1 cells. Biochim Biophys Acta. 1983 Nov 23;735(3):325–330. doi: 10.1016/0005-2736(83)90145-1. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Brown C. D., Bodmer M., Biber J., Murer H. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC-PK1). Biochim Biophys Acta. 1984 Jan 25;769(2):471–478. doi: 10.1016/0005-2736(84)90332-8. [DOI] [PubMed] [Google Scholar]
  4. Handler J. S., Perkins F. M., Johnson J. P. Studies of renal cell function using cell culture techniques. Am J Physiol. 1980 Jan;238(1):F1–F9. doi: 10.1152/ajprenal.1980.238.1.F1. [DOI] [PubMed] [Google Scholar]
  5. Hull R. N., Cherry W. R., Weaver G. W. The origin and characteristics of a pig kidney cell strain, LLC-PK. In Vitro. 1976 Oct;12(10):670–677. doi: 10.1007/BF02797469. [DOI] [PubMed] [Google Scholar]
  6. Inui K., Saito H., Takano M., Okano T., Kitazawa S., Hori R. Enzyme activities and sodium-dependent active D-glucose transport in apical membrane vesicles isolated from kidney epithelial cell line (LLC-PK1). Biochim Biophys Acta. 1984 Jan 25;769(2):514–518. doi: 10.1016/0005-2736(84)90340-7. [DOI] [PubMed] [Google Scholar]
  7. Lever J. E. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport. J Biol Chem. 1982 Aug 10;257(15):8680–8686. [PubMed] [Google Scholar]
  8. Mills J. W., Macknight A. D., Dayer J. M., Ausiello D. A. Localization of [3H]ouabain-sensitive Na+ pump sites in cultured pig kidney cells. Am J Physiol. 1979 Mar;236(3):C157–C162. doi: 10.1152/ajpcell.1979.236.3.C157. [DOI] [PubMed] [Google Scholar]
  9. Mills J. W., Macknight A. D., Jarrell J. A., Dayer J. M., Ausiello D. A. Interaction of ouabain with the Na+ pump in intact epithelial cells. J Cell Biol. 1981 Mar;88(3):637–643. doi: 10.1083/jcb.88.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Misfeldt D. S., Sanders M. J. Transepithelial transport in cell culture: D-glucose transport by a pig kidney cell line (LLC-PK1). J Membr Biol. 1981 Mar 15;59(1):13–18. doi: 10.1007/BF01870816. [DOI] [PubMed] [Google Scholar]
  11. Moran A., Handler J. S., Turner R. J. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line. Am J Physiol. 1982 Nov;243(5):C293–C298. doi: 10.1152/ajpcell.1982.243.5.C293. [DOI] [PubMed] [Google Scholar]
  12. Mullin J. M., Weibel J., Diamond L., Kleinzeller A. Sugar transport in the LLC-PK1 renal epithelial cell line: similarity to mammalian kidney and the influence of cell density. J Cell Physiol. 1980 Sep;104(3):375–389. doi: 10.1002/jcp.1041040311. [DOI] [PubMed] [Google Scholar]
  13. Murer H., Kinne R. The use of isolated membrane vesicles to study epithelial transport processes. J Membr Biol. 1980 Jul 15;55(2):81–95. doi: 10.1007/BF01871151. [DOI] [PubMed] [Google Scholar]
  14. Møller J. V., Sheikh M. I. Renal organic anion transport system: pharmacological, physiological, and biochemical aspects. Pharmacol Rev. 1982 Dec;34(4):315–358. [PubMed] [Google Scholar]
  15. Rabito C. A., Ausiello D. A. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney. J Membr Biol. 1980;54(1):31–38. doi: 10.1007/BF01875374. [DOI] [PubMed] [Google Scholar]
  16. Rabito C. A., Karish M. V. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The apical systems. J Biol Chem. 1983 Feb 25;258(4):2543–2547. [PubMed] [Google Scholar]
  17. Rabito C. A., Karish M. V. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The basolateral systems. J Biol Chem. 1982 Jun 25;257(12):6802–6808. [PubMed] [Google Scholar]
  18. Rabito C. A., Kreisberg J. I., Wight D. Alkaline phosphatase and gamma-glutamyl transpeptidase as polarization markers during the organization of LLC-PK1 cells into an epithelial membrane. J Biol Chem. 1984 Jan 10;259(1):574–582. [PubMed] [Google Scholar]
  19. Rabito C. A. Phosphate uptake by a kidney cell line (LLC-PK1). Am J Physiol. 1983 Jul;245(1):F22–F31. doi: 10.1152/ajprenal.1983.245.1.F22. [DOI] [PubMed] [Google Scholar]
  20. Rennick B. R. Renal tubule transport of organic cations. Am J Physiol. 1981 Feb;240(2):F83–F89. doi: 10.1152/ajprenal.1981.240.2.F83. [DOI] [PubMed] [Google Scholar]
  21. Sepúlveda F. V., Pearson J. D. Characterization of neutral amino acid uptake by cultured epithelial cells from pig kidney. J Cell Physiol. 1982 Aug;112(2):182–188. doi: 10.1002/jcp.1041120205. [DOI] [PubMed] [Google Scholar]
  22. Takano M., Inui K., Okano T., Saito H., Hori R. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles. Biochim Biophys Acta. 1984 Jun 13;773(1):113–124. doi: 10.1016/0005-2736(84)90556-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES