Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Apr 1;227(1):211–216. doi: 10.1042/bj2270211

Purification and some properties of glyoxylate reductase (NADP+) and its functional location in mitochondria in Euglena gracilis z.

A Yokota, S Haga, S Kitaoka
PMCID: PMC1144828  PMID: 3922357

Abstract

Euglena mitochondria contain both glyoxylate reductase (NADP+) and glycollate dehydrogenase to constitute the glycollate-glyoxylate cycle [Yokota & Kitaoka (1979) Biochem. J. 184, 189-192]. Euglena glyoxylate reductase (NADP+) was purified and its submitochondrial location was determined in order to elucidate the cycle. The purified glyoxylate reductase was homogeneous on polyacrylamide-gel electrophoresis. Difference spectra of the purified enzyme revealed that the enzyme was a flavin enzyme. The Mr of the enzyme was 82 000. The enzyme was specific for NADPH, with an apparent Km of 3.9 microM, and for glyoxylate, with an apparent Km of 45 microM. It was 30% as active with oxaloacetate as with glyoxylate. NADH and hydroxypyruvate did not support the activity at all. The optimum pH was 6.45. Submitochondrial fractionation of purified mitochondria showed that the enzyme was located in the intermembrane space and loosely bound to the outer surface of the inner membrane. These properties and the submitochondrial localization of NADPH-glyoxylate reductase facilitate the operation of the glycollate-glyoxylate cycle in combination with glycollate dehydrogenase, which is tightly bound to the inner membrane of Euglena mitochondria.

Full text

PDF
211

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beezley B. B., Gruber P. J., Frederick S. E. Cytochemical localization of glycolate dehydrogenase in mitochondria of chlamydomonas. Plant Physiol. 1976 Sep;58(3):315–319. doi: 10.1104/pp.58.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cartwright L. N., Hullin R. P. Purification and properties of two glyoxylate reductases from a species of Pseudomonas. Biochem J. 1966 Dec;101(3):781–791. doi: 10.1042/bj1010781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Fukuda H., Moriguchi M., Tochikura T. Purification and enzymatic properties of glyoxylate reductase II from baker's yeast. J Biochem. 1980 Mar;87(3):841–846. doi: 10.1093/oxfordjournals.jbchem.a132814. [DOI] [PubMed] [Google Scholar]
  5. Klein B., Foreman J. A., Searcy R. L. The synthesis and utilization of Cibachron Blue-amylose: a new chromogenic substrate for determination of amylase activity. Anal Biochem. 1969 Oct 1;31(1):412–425. doi: 10.1016/0003-2697(69)90283-8. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Lane A. E., Burris J. E. Effects of Environmental pH on the Internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant Physiol. 1981 Aug;68(2):439–442. doi: 10.1104/pp.68.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lawyer A. L., Cornwell K. L., Gee S. L., Bassham J. A. Glyoxylate and glutamate effects on photosynthetic carbon metabolism in isolated chloroplasts and mesophyll cells of spinach. Plant Physiol. 1983 Jun;72(2):420–425. doi: 10.1104/pp.72.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meyer T. S., Lamberts B. L. Use of coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta. 1965 Aug 24;107(1):144–145. doi: 10.1016/0304-4165(65)90403-4. [DOI] [PubMed] [Google Scholar]
  10. Mulligan R. M., Wilson B., Tolbert N. E. Effects of glyoxylate on photosynthesis by intact chloroplasts. Plant Physiol. 1983 Jun;72(2):415–419. doi: 10.1104/pp.72.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paul J. S., Sullivan C. S., Bolxani B. E. Photorespiration in diatoms. Mitochondrial glycolate dehydrogenase in clyindrotheca fusiformis and Nitzschia alba. Arch Biochem Biophys. 1975 Jul;169(1):152–159. doi: 10.1016/0003-9861(75)90328-8. [DOI] [PubMed] [Google Scholar]
  12. Peterson R. B. Enhanced Incorporation of Tritium into Glycolate during Photosynthesis by Tobacco Leaf Tissue in the Presence of Tritiated Water. Plant Physiol. 1982 Jan;69(1):192–197. doi: 10.1104/pp.69.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schimpfessel L. Presence et regulation de la synthese DE DEUX ALCOOL DESHYDROGENASES CHEZ LA LEVURE Saccharomyces cerevisiae. Biochim Biophys Acta. 1968 Feb 5;151(2):317–329. doi: 10.1016/0005-2744(68)90099-5. [DOI] [PubMed] [Google Scholar]
  14. Stabenau H. Localization of Enzymes of Glycolate Metabolism in the Alga Chlorogonium elongatum. Plant Physiol. 1974 Dec;54(6):921–924. doi: 10.1104/pp.54.6.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Storer A. C., Cornish-Bowden A. The kinetics of coupled enzyme reactions. Applications to the assay of glucokinase, with glucose 6-phosphate dehydrogenase as coupling enzyme. Biochem J. 1974 Jul;141(1):205–209. doi: 10.1042/bj1410205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ting I. P. Malic dehydrogenases in corn root tips. Arch Biochem Biophys. 1968 Jul;126(1):1–7. doi: 10.1016/0003-9861(68)90552-3. [DOI] [PubMed] [Google Scholar]
  17. Tochikura T., Fukuda H., Moriguchi M. Purification and properties of glyoxylate reductase I from baker's yeast. J Biochem. 1979 Jul;86(1):105–110. [PubMed] [Google Scholar]
  18. Tolbert N. E., Yamazaki R. K., Oeser A. Localization and properties of hydroxypyruvate and glyoxylate reductases in spinach leaf particles. J Biol Chem. 1970 Oct 10;245(19):5129–5136. [PubMed] [Google Scholar]
  19. Yokota A., Kitaoka S. Occurrence and operation of the glycollate--glyoxylate shuttle in mitochondria of Euglena gracilis Z. Biochem J. 1979 Oct 15;184(1):189–192. doi: 10.1042/bj1840189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yokota A., Kitaoka S. Synthesis, Excretion, and Metabolism of Glycolate under Highly Photorespiratory Conditions in Euglena gracilis Z. Plant Physiol. 1982 Sep;70(3):760–764. doi: 10.1104/pp.70.3.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. ZELITCH I., GOTTO A. M. Properties of a new glyoxylate reductase from leaves. Biochem J. 1962 Sep;84:541–546. doi: 10.1042/bj0840541. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES