Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Apr 1;227(1):239–245. doi: 10.1042/bj2270239

Calcium transport mechanisms in basolateral plasma membrane-enriched vesicles from rat parotid gland.

T Takuma, B L Kuyatt, B J Baum
PMCID: PMC1144832  PMID: 3994684

Abstract

Ca2+ transport was studied by using basolateral plasma membrane vesicles from rat parotid gland prepared by a Percoll gradient centrifugation method. In these membrane vesicles, there were two Ca2+ transport systems; Na+/Ca2+ exchange and ATP-dependent Ca2+ transport. An outwardly directed Na+ gradient increased Ca2+ uptake. Ca2+ efflux from Ca2+-preloaded vesicles was stimulated by an inwardly directed Na+ gradient. However, Na+/Ca2+ exchange did not show any 'uphill' transport of Ca2+ against its own gradient. ATP-dependent Ca2+ transport exhibited 'uphill' transport. An inwardly directed Na+ gradient also decreased Ca2+ accumulation by ATP-dependent Ca2+ uptake. The inhibition of Ca2+ accumulation was proportional to the external Na+ level. Na+/Ca2+ exchange was inhibited by monensin, tetracaine and chlorpromazine, whereas ATP-dependent Ca2+ transport was inhibited by orthovanadate, tetracaine and chlorpromazine. Oligomycin had no effect on either system. These results suggest that in the parotid gland cellular free Ca2+ is extruded mainly by an ATP-dependent Ca2+ transport system, and Na+/Ca2+ exchange may modify the efficacy of that system.

Full text

PDF
239

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvan P., Castle J. D. Plasma membrane of the rat parotid gland: preparation and partial characterization of a fraction containing the secretory surface. J Cell Biol. 1982 Oct;95(1):8–19. doi: 10.1083/jcb.95.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonis D., Rossignol B. Effect of sodium and potassium on ATP-dependent Ca2+ uptake in rat parotid microsomes. FEBS Lett. 1982 Jan 11;137(1):63–66. doi: 10.1016/0014-5793(82)80315-3. [DOI] [PubMed] [Google Scholar]
  3. Butcher F. R., Putney J. W., Jr Regulation of parotid gland function by cyclic nucleotides and calcium. Adv Cyclic Nucleotide Res. 1980;13:215–249. [PubMed] [Google Scholar]
  4. Caroni P., Carafoli E. The regulation of the Na+ -Ca2+ exchanger of heart sarcolemma. Eur J Biochem. 1983 May 16;132(3):451–460. doi: 10.1111/j.1432-1033.1983.tb07383.x. [DOI] [PubMed] [Google Scholar]
  5. Connolly E., Nånberg E., Nedergaard J. Na+-dependent, alpha-adrenergic mobilization of intracellular (mitochondrial) Ca2+ in brown adipocytes. Eur J Biochem. 1984 May 15;141(1):187–193. doi: 10.1111/j.1432-1033.1984.tb08173.x. [DOI] [PubMed] [Google Scholar]
  6. Famulski K. S., Carafoli E. Calmodulin-dependent protein phosphorylation and calcium uptake in rat-liver microsomes. Eur J Biochem. 1984 May 15;141(1):15–20. doi: 10.1111/j.1432-1033.1984.tb08149.x. [DOI] [PubMed] [Google Scholar]
  7. Ghijsen W. E., De Jong M. D., Van Os C. H. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine. Biochim Biophys Acta. 1983 Apr 21;730(1):85–94. doi: 10.1016/0005-2736(83)90320-6. [DOI] [PubMed] [Google Scholar]
  8. Gmaj P., Murer H., Kinne R. Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J. 1979 Mar 15;178(3):549–557. doi: 10.1042/bj1780549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hayakawa M., Aoki H., Terao N., Abiko Y., Takiguchi H. Vitamin D-mediated decrease of Ca2+-pump activity in the rat parotid gland. Int J Biochem. 1983;15(9):1175–1178. doi: 10.1016/0020-711x(83)90234-3. [DOI] [PubMed] [Google Scholar]
  10. Hildmann B., Schmidt A., Murer H. Ca++-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells. J Membr Biol. 1982;65(1-2):55–62. doi: 10.1007/BF01870469. [DOI] [PubMed] [Google Scholar]
  11. Kanagasuntheram P., Teo T. S. Parotid microsomal Ca2+ transport. Subcellular localization and characterization. Biochem J. 1982 Dec 15;208(3):789–794. doi: 10.1042/bj2080789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Moore P. B., Kraus-Friedmann N. Hepatic microsomal Ca2+-dependent ATPase. Calmodulin-dependence and partial purification. Biochem J. 1983 Jul 15;214(1):69–75. doi: 10.1042/bj2140069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morel N., Godfraind T. Sodium/calcium exchange in smooth-muscle microsomal fractions. Biochem J. 1984 Mar 1;218(2):421–427. doi: 10.1042/bj2180421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Putney J. W., Jr Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev. 1978 Jun;30(2):209–245. [PubMed] [Google Scholar]
  16. Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scalera V., Storelli C., Storelli-Joss C., Haase W., Murer H. A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells. Biochem J. 1980 Jan 15;186(1):177–181. doi: 10.1042/bj1860177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Selinger Z., Naim E., Lasser M. ATP-dependent calcium uptake by microsomal preparations from rat parotid and submaxillary glands. Biochim Biophys Acta. 1970 Apr 21;203(2):326–334. doi: 10.1016/0005-2736(70)90147-1. [DOI] [PubMed] [Google Scholar]
  19. Shamoo A. E., Ambudkar I. S. Regulation of calcium transport in cardiac cells. Can J Physiol Pharmacol. 1984 Jan;62(1):9–22. doi: 10.1139/y84-002. [DOI] [PubMed] [Google Scholar]
  20. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Terman B. I., Gunter T. E. Characterization of the submandibular gland microsomal calcium transport system. Biochim Biophys Acta. 1983 Apr 21;730(1):151–160. doi: 10.1016/0005-2736(83)90327-9. [DOI] [PubMed] [Google Scholar]
  22. Ueda T. Na+-Ca2+ exchange activity in rabbit lymphocyte plasma membranes. Biochim Biophys Acta. 1983 Oct 12;734(2):342–346. doi: 10.1016/0005-2736(83)90133-5. [DOI] [PubMed] [Google Scholar]
  23. Williams J. A. Na+ dependence of in vitro pancreatic amylase release. Am J Physiol. 1975 Oct;229(4):1023–1026. doi: 10.1152/ajplegacy.1975.229.4.1023. [DOI] [PubMed] [Google Scholar]
  24. van Heeswijk M. P., Geertsen J. A., van Os C. H. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex. J Membr Biol. 1984;79(1):19–31. doi: 10.1007/BF01868523. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES