Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Apr 15;227(2):379–387. doi: 10.1042/bj2270379

Quantification of cytochrome P-450-dependent cyclohexane hydroxylase activity in normal and neoplastic reproductive tissues.

T I Senler, W L Dean, L F Murray, J L Wittliff
PMCID: PMC1144856  PMID: 4004771

Abstract

It is well established that liver microsomal cytochrome P-450 participates in steroid metabolism and probably also in the metabolism of anti-oestrogens such as tamoxifen (Nolvadex). Thus it is possible that variations in cytochrome P-450 levels may influence the responsiveness of human breast and endometrial carcinomas to endocrine therapy. Therefore a simple sensitive spectrophotometric assay for determining levels of cytochrome P-450-dependent cyclohexane hydroxylation activity in breast and uterine microsomes (microsomal fractions) has been developed. Cyclohexane was chosen as a substrate because of the relatively high levels of cyclohexane hydroxylase activity in tumour microsomes and because cyclohexane serves as a substrate for several forms of cytochrome P-450. As previously described [Senler, Dean, Pierce & Wittliff (1985) Anal. Biochem. 144, 152-158], a direct method utilizing isotope-dilution/gas chromatography-mass spectrometry was also developed in order to confirm the results of the spectrophotometric assay. The average activity (cyclohexane-dependent NADPH oxidation) for 139 human breast-tumour microsome preparations was 1.34 nmol/min per mg, which is in the range of that found in untreated mammalian liver (1-3 nmol/min per mg). Also, high enzyme activity was demonstrated in human ovary, normal uterus as well as uterine leiomyomas. Endocrine status appeared to influence enzyme levels, in that mammary tissue from virgin rats contained significantly (P less than 0.025) higher amounts of activity than did tissues from either pregnant or lactating rats. Furthermore, carbon monoxide, as well as an antibody against rat liver cytochrome P-450, completely inhibited NADPH oxidation by breast-carcinoma microsomes. These results strengthen our hypothesis that tumours with high levels of cytochrome P-450 may have a reduced response to additive endocrine therapy.

Full text

PDF
379

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armbrecht H. J., Birnbaum L. S., Zenser T. V., Mattammal M. B., Davis B. B. Renal cytochrome P-450's-electrophoretic and electron paramagnetic resonance studies. Arch Biochem Biophys. 1979 Oct 1;197(1):277–284. doi: 10.1016/0003-9861(79)90246-7. [DOI] [PubMed] [Google Scholar]
  2. Betz G., Tsai P., Weakley R. Heterogeneity of cytochrome P-450 in rat testis microsomes. J Biol Chem. 1976 May 10;251(9):2839–2841. [PubMed] [Google Scholar]
  3. Dean W. L., Coon M. J. Immunochemical studies on two electrophoretically homogeneous forms of rabbit liver microsomal cytochrome P-450: P-450LM2 and P-450LM4. J Biol Chem. 1977 May 25;252(10):3255–3261. [PubMed] [Google Scholar]
  4. ESTABROOK R. W., COOPER D. Y., ROSENTHAL O. THE LIGHT REVERSIBLE CARBON MONOXIDE INHIBITION OF THE STEROID C21-HYDROXYLASE SYSTEM OF THE ADRENAL CORTEX. Biochem Z. 1963;338:741–755. [PubMed] [Google Scholar]
  5. Fang W. F., Strobel H. W. The drug and carcinogen metabolism system of rat colon microsomes. Arch Biochem Biophys. 1978 Feb;186(1):128–138. doi: 10.1016/0003-9861(78)90472-1. [DOI] [PubMed] [Google Scholar]
  6. GREEN D. E., MII S., KOHOUT P. M. Studies on the terminal electron transport system. I. Succinic dehydrogenase. J Biol Chem. 1955 Dec;217(2):551–567. [PubMed] [Google Scholar]
  7. Gardner D. G., Wittliff J. L. Specific estrogen receptors in the lactating mammary gland of the rat. Biochemistry. 1973 Jul 31;12(16):3090–3096. doi: 10.1021/bi00740a023. [DOI] [PubMed] [Google Scholar]
  8. Gillette J. R. Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum. Adv Pharmacol. 1966;4:219–261. doi: 10.1016/s1054-3589(08)60100-3. [DOI] [PubMed] [Google Scholar]
  9. Gray R. D. Kinetics and mechanism of carbon monoxide binding to purified liver microsomal cytochrome P-450 isozymes. J Biol Chem. 1982 Jan 25;257(2):1086–1094. [PubMed] [Google Scholar]
  10. Guengerich F. P., Martin M. V. Purification of cytochrome P-450, NADPH-cytochrome P-450 reductase, and epoxide hydratase from a single preparation of rat liver microsomes. Arch Biochem Biophys. 1980 Dec;205(2):365–379. doi: 10.1016/0003-9861(80)90119-8. [DOI] [PubMed] [Google Scholar]
  11. Guengerich F. P., Wang P., Mason P. S., Mitchell M. B. Immunological comparison of rat, rabbit, and human microsomal cytochromes P-450. Biochemistry. 1981 Apr 28;20(9):2370–2378. doi: 10.1021/bi00512a002. [DOI] [PubMed] [Google Scholar]
  12. Hoffman A. R., Paul S. M., Axelrod J. Catecholestrogen synthesis and metabolism by human breast tumors in vitro. Cancer Res. 1979 Nov;39(11):4584–4587. [PubMed] [Google Scholar]
  13. Jensen E. V., Block G. E., Smith S., Kyser K., DeSombre E. R. Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr. 1971 Dec;34:55–70. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lu A. Y., Coon M. J. Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem. 1968 Mar 25;243(6):1331–1332. [PubMed] [Google Scholar]
  17. Lu A. Y., Strobel H. W., Coon M. J. Properties of a solubilized form of the cytochrome P-450-containing mixed-function oxidase of liver microsomes. Mol Pharmacol. 1970 May;6(3):213–220. [PubMed] [Google Scholar]
  18. Maass H., Jonat W., Stolzenbach G., Trams G. The problem of nonresponding estrogen receptor-positive patients with advanced breast cancer. Cancer. 1980 Dec 15;46(12 Suppl):2835–2837. doi: 10.1002/1097-0142(19801215)46:12+<2835::aid-cncr2820461420>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  19. Mason M. E., Okey A. B. Aryl hydrocarbon hydroxylase activity in mouse, rat, and human mammary tumors. Cancer Res. 1981 Jul;41(7):2778–2782. [PubMed] [Google Scholar]
  20. Nordblom G. D., Coon M. J. Hydrogen peroxide formation and stoichiometry of hydroxylation reactions catalyzed by highly purified liver microsomal cytochrome P-450. Arch Biochem Biophys. 1977 Apr 30;180(2):343–347. doi: 10.1016/0003-9861(77)90047-9. [DOI] [PubMed] [Google Scholar]
  21. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  22. Poland A. P., Glover E., Robinson J. R., Nebert D. W. Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically "nonresponsive" to other aromatic hydrocarbons. J Biol Chem. 1974 Sep 10;249(17):5599–5606. [PubMed] [Google Scholar]
  23. RYAN K. J., ENGEL L. L. Hydroxylation of steroids at carbon 21. J Biol Chem. 1957 Mar;225(1):103–114. [PubMed] [Google Scholar]
  24. Sasame H. A., Ames M. M., Nelson S. D. Cytochrome P-450 and NADPH cytochrome c reductase in rat brain: formation of catechols and reactive catechol metabolites. Biochem Biophys Res Commun. 1977 Oct 10;78(3):919–926. doi: 10.1016/0006-291x(77)90510-1. [DOI] [PubMed] [Google Scholar]
  25. Senler T. I., Dean W. L., Pierce W. M., Jr, Wittliff J. L. Procedures for measuring cytochrome P-450-dependent hydroxylation activity in reproductive tissues. Anal Biochem. 1985 Jan;144(1):152–158. doi: 10.1016/0003-2697(85)90097-1. [DOI] [PubMed] [Google Scholar]
  26. Serabjit-Singh C. J., Wolf C. R., Philpot R. M. The rabbit pulmonary monooxygenase system. Immunochemical and biochemical characterization of enzyme components. J Biol Chem. 1979 Oct 10;254(19):9901–9907. [PubMed] [Google Scholar]
  27. Soules M. R., McCarty K. S., Jr Leiomyomas: steroid receptor content. Variation within normal menstrual cycles. Am J Obstet Gynecol. 1982 May 1;143(1):6–11. doi: 10.1016/0002-9378(82)90676-7. [DOI] [PubMed] [Google Scholar]
  28. Wagner S. L., Dean W. L., Gray R. D. Effect of a zwitterionic detergent on the state of aggregation and catalytic activity of cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase. J Biol Chem. 1984 Feb 25;259(4):2390–2395. [PubMed] [Google Scholar]
  29. Wiehle R. D., Wittliff J. L. Alterations in sex-steroid hormone receptors during mammary gland differentiation in the rat. Comp Biochem Physiol B. 1983;76(3):409–417. doi: 10.1016/0305-0491(83)90267-5. [DOI] [PubMed] [Google Scholar]
  30. Wilson E. A., Yang F., Rees E. D. Estradiol and progesterone binding in uterine leiomyomata and in normal uterine tissues. Obstet Gynecol. 1980 Jan;55(1):20–24. [PubMed] [Google Scholar]
  31. Wittliff J. L. Steroid-hormone receptors in breast cancer. Cancer. 1984 Feb 1;53(3 Suppl):630–643. doi: 10.1002/1097-0142(19840201)53:3+<630::aid-cncr2820531308>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES