Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Apr 15;227(2):491–502. doi: 10.1042/bj2270491

Characterization of a type VI collagen-related Mr-140 000 protein from cutis-laxa fibroblasts in culture.

S W Crawford, J A Featherstone, K Holbrook, S L Yong, P Bornstein, H Sage
PMCID: PMC1144868  PMID: 4004777

Abstract

The precise biochemical defects in connective-tissue metabolism that are responsible for the laxity of skin seen in the syndrome of cutis laxa are largely unknown. We have studied fibroblasts cultured from skin explants of a 2-year-old male with the syndrome. Electron-microscopic examination of this skin revealed decreased amounts of amorphous elastin and an increase in elastin-associated microfibrils. Although the cultured fibroblasts were similar to control skin fibroblasts in morphology, growth rate and total protein synthesis, there was a 4-6-fold increase in accumulation of a collagenous protein of Mr 140 000 in both the culture medium and in the cell layer. This protein was structurally distinct from collagen types I, III, IV, V and VIII. It was found to be related to a cell-surface-associated glycoprotein, GP140, by both antigenic cross-reactivity and peptide mapping. Our data support observations that GP140 is a precursor of at least one form of pepsin-extracted type VI collagen.

Full text

PDF
491

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball M. A., McCullough J. L., Weinstein G. D. Percutaneous absorption of methotrexate: effect on epidermal DNA synthesis in hairless mice. J Invest Dermatol. 1982 Jul;79(1):7–10. doi: 10.1111/1523-1747.ep12510415. [DOI] [PubMed] [Google Scholar]
  2. Barsh G. S., Peterson K. E., Byers P. H. Peptide mapping of collagen chains using CNBr cleavage of proteins within polyacrylamide gels. Coll Relat Res. 1981 Nov;1(6):543–548. doi: 10.1016/s0174-173x(81)80035-0. [DOI] [PubMed] [Google Scholar]
  3. Byers P. H., Siegel R. C., Holbrook K. A., Narayanan A. S., Bornstein P., Hall J. G. X-linked cutis laxa: defective cross-link formation in collagen due to decreased lysyl oxidase activity. N Engl J Med. 1980 Jul 10;303(2):61–65. doi: 10.1056/NEJM198007103030201. [DOI] [PubMed] [Google Scholar]
  4. Carter W. G., Hakomori S. A new cell surface, detergent-insoluble glycoprotein matrix of human and hamster fibroblasts. The role of disulfide bonds in stabilization of the matrix. J Biol Chem. 1981 Jul 10;256(13):6953–6960. [PubMed] [Google Scholar]
  5. Carter W. G. The cooperative role of the transformation-sensitive glycoproteins, GP140 and fibronectin, in cell attachment and spreading. J Biol Chem. 1982 Mar 25;257(6):3249–3257. [PubMed] [Google Scholar]
  6. Carter W. G. The role of intermolecular disulfide bonding in deposition of GP140 in the extracellular matrix. J Cell Biol. 1984 Jul;99(1 Pt 1):105–114. doi: 10.1083/jcb.99.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carter W. G. Transformation-dependent alterations is glycoproteins of extracellular matrix of human fibroblasts. Characterization of GP250 and the collagen-like GP140. J Biol Chem. 1982 Nov 25;257(22):13805–13815. [PubMed] [Google Scholar]
  8. Cleary E. G., Gibson M. A. Elastin-associated microfibrils and microfibrillar proteins. Int Rev Connect Tissue Res. 1983;10:97–209. doi: 10.1016/b978-0-12-363710-9.50009-5. [DOI] [PubMed] [Google Scholar]
  9. Crouch E., Bornstein P. Collagen synthesis by human amniotic fluid cells in culture: characterization of a procollagen with three identical proalpha1(I) chains. Biochemistry. 1978 Dec 12;17(25):5499–5509. doi: 10.1021/bi00618a027. [DOI] [PubMed] [Google Scholar]
  10. Fauvel F., Grant M. E., Legrand Y. J., Souchon H., Tobelem G., Jackson D. S., Caen J. P. Interaction of blood platelets with a microfibrillar extract from adult bovine aorta: requirement for von Willebrand factor. Proc Natl Acad Sci U S A. 1983 Jan;80(2):551–554. doi: 10.1073/pnas.80.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson M. A., Cleary E. G. A collagen-like glycoprotein from elastin-rich tissues. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1288–1295. doi: 10.1016/0006-291x(82)90926-3. [DOI] [PubMed] [Google Scholar]
  12. Heller-Harrison R. A., Carter W. G. Pepsin-generated type VI collagen is a degradation product of GP140. J Biol Chem. 1984 Jun 10;259(11):6858–6864. [PubMed] [Google Scholar]
  13. Hennings H., Holbrook K. A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res. 1983 Jan;143(1):127–142. doi: 10.1016/0014-4827(83)90115-5. [DOI] [PubMed] [Google Scholar]
  14. Hessle H., Engvall E. Type VI collagen. Studies on its localization, structure, and biosynthetic form with monoclonal antibodies. J Biol Chem. 1984 Mar 25;259(6):3955–3961. [PubMed] [Google Scholar]
  15. Jander R., Troyer D., Rauterberg J. A collagen-like glycoprotein of the extracellular matrix is the undegraded form of type VI collagen. Biochemistry. 1984 Jul 31;23(16):3675–3681. doi: 10.1021/bi00311a016. [DOI] [PubMed] [Google Scholar]
  16. Jones C. J., Sear C. H., Grant M. E. An ultrastructural study of fibroblasts derived from bovine ligamentum nuchae and their capacity for elastogenesis in culture. J Pathol. 1980 May;131(1):35–53. doi: 10.1002/path.1711310104. [DOI] [PubMed] [Google Scholar]
  17. Knight K. R., Ayad S., Shuttleworth C. A., Grant M. E. A collagenous glycoprotein found in dissociative extracts of foetal bovine nuchal ligament. Evidence for a relationship with type VI collagen. Biochem J. 1984 Jun 1;220(2):395–403. doi: 10.1042/bj2200395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuivaniemi H., Peltonen L., Palotie A., Kaitila I., Kivirikko K. I. Abnormal copper metabolism and deficient lysyl oxidase activity in a heritable connective tissue disorder. J Clin Invest. 1982 Mar;69(3):730–733. doi: 10.1172/JCI110503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lamberg S. I., Poppke D. C., Williams B. R. Isolation of elastic tissue microfibrils derived from cultured cells of calf ligamentum nuchae. Connect Tissue Res. 1980;8(1):1–8. doi: 10.3109/03008208009152115. [DOI] [PubMed] [Google Scholar]
  22. Peltonen L., Kuivaniemi H., Palotie A., Horn N., Kaitila I., Kivirikko K. I. Alterations in copper and collagen metabolism in the Menkes syndrome and a new subtype of the Ehlers-Danlos syndrome. Biochemistry. 1983 Dec 20;22(26):6156–6163. doi: 10.1021/bi00295a018. [DOI] [PubMed] [Google Scholar]
  23. Ross R., Bornstein P. The elastic fiber. I. The separation and partial characterization of its macromolecular components. J Cell Biol. 1969 Feb;40(2):366–381. doi: 10.1083/jcb.40.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sage H., Bornstein P. Characterization of a novel collagen chain in human placenta and its relation to AB collagen. Biochemistry. 1979 Aug 21;18(17):3815–3822. doi: 10.1021/bi00584a027. [DOI] [PubMed] [Google Scholar]
  25. Sage H., Bornstein P. Preparation and characterization of procollagens and procollagen-collagen intermediates. Methods Enzymol. 1982;82(Pt A):96–127. doi: 10.1016/0076-6879(82)82061-2. [DOI] [PubMed] [Google Scholar]
  26. Sage H., Crouch E., Bornstein P. Collagen synthesis by bovine aortic endothelial cells in culture. Biochemistry. 1979 Nov 27;18(24):5433–5442. doi: 10.1021/bi00591a028. [DOI] [PubMed] [Google Scholar]
  27. Sage H., Pritzl P., Bornstein P. A unique, pepsin-sensitive collagen synthesized by aortic endothelial cells in culture. Biochemistry. 1980 Dec 9;19(25):5747–5755. doi: 10.1021/bi00566a013. [DOI] [PubMed] [Google Scholar]
  28. Sear C. H., Grant M. E., Jackson D. S. The nature of the microfibrillar glycoproteins of elastic fibres. A biosynthetic study. Biochem J. 1981 Feb 15;194(2):587–598. doi: 10.1042/bj1940587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sear C. H., Kewley M. A., Jones C. J., Grant M. E., Jackson D. S. The identification of glycoproteins associated with elastic-tissue microfibrils. Biochem J. 1978 Mar 15;170(3):715–718. doi: 10.1042/bj1700715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Serafini-Fracassini A., Ventrella G., Field M. J., Hinnie J., Onyezili N. I., Griffiths R. Characterization of a structural glycoprotein from bovine ligamentum nuchae exhibiting dual amine oxidase activity. Biochemistry. 1981 Sep 15;20(19):5424–5429. doi: 10.1021/bi00522a011. [DOI] [PubMed] [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trüeb B., Bornstein P. Characterization of the precursor form of type VI collagen. J Biol Chem. 1984 Jul 10;259(13):8597–8604. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES