Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 May 1;227(3):981–985. doi: 10.1042/bj2270981

Evidence that the medium-chain acyltransferase of lactating-goat mammary-gland fatty acid synthetase is identical with the acetyl/malonyltransferase.

J Mikkelsen, P Højrup, H F Hansen, J K Hansen, J Knudsen
PMCID: PMC1144930  PMID: 4004809

Abstract

Competitive binding experiments with malonyl-CoA and [1-14C]acetyl-CoA, [1-14C]butyryl-CoA or [1-14C]decanoyl-CoA indicate that all these substrates are transferred to lactating-goat mammary-gland fatty acid synthetase by the same transferase. Isolation and determination of the amino acid sequence of [1-14C]decanoyl-labelled CNBr-cleavage peptide from the decanoyltransferase site showed that this transferase is identical with the acetyl/malonyltransferase.

Full text

PDF
981

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloch K., Vance D. Control mechanisms in the synthesis of saturated fatty acids. Annu Rev Biochem. 1977;46:263–298. doi: 10.1146/annurev.bi.46.070177.001403. [DOI] [PubMed] [Google Scholar]
  2. Carey E. M., Dils R. Fatty acid biosynthesis. V. Purification and characterisation of fatty acid synthetase from lactating-rabbit mammary gland. Biochim Biophys Acta. 1970 Sep 8;210(3):371–387. doi: 10.1016/0005-2760(70)90033-0. [DOI] [PubMed] [Google Scholar]
  3. Engeser H., Hübner K., Straub J., Lynen F. Identity of malonyl and palmitoyl transferase of fatty acid synthetase from yeast. 2. A comparison of active-site peptides. Eur J Biochem. 1979 Nov;101(2):413–422. doi: 10.1111/j.1432-1033.1979.tb19734.x. [DOI] [PubMed] [Google Scholar]
  4. Hansen H. O., Grunnet I., Knudsen J. Triacylglycerol synthesis in goat mammary gland. The effect of ATP, Mg2+ and glycerol 3-phosphate on the esterification of fatty acids synthesized de novo. Biochem J. 1984 Jun 1;220(2):513–519. doi: 10.1042/bj2200513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hansen J. K., Knudsen J. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of butyrate and hexanoate by lactating cow mammary gland fatty acid synthetase. Biochem J. 1980 Jan 15;186(1):287–294. doi: 10.1042/bj1860287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knudsen J., Clark S., Dils R. Purification and some properties of a medium-chain acyl-thioester hydrolase from lactating-rabbit mammary gland which terminates chain elongation in fatty acid synthesis. Biochem J. 1976 Dec 15;160(3):683–691. doi: 10.1042/bj1600683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knudsen J., Grunnet I. Primer specificity of mammalian mammary gland fatty acid synthetases. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1808–1814. doi: 10.1016/s0006-291x(80)80109-4. [DOI] [PubMed] [Google Scholar]
  8. Knudsen J., Grunnet I. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase. Biochem J. 1982 Jan 15;202(1):139–143. doi: 10.1042/bj2020139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Libertini L. J., Smith S. Purification and properties of a thioesterase from lactating rat mammary gland which modifies the product specificity of fatty acid synthetase. J Biol Chem. 1978 Mar 10;253(5):1393–1401. [PubMed] [Google Scholar]
  10. Marshall M. O., Knudsen J. Biosynthesis of triacylglycerols containing short-chain fatty acids in lactating cow mammary gland. Activity of diacylglycerol acyltransferase towards short-chain acyl-CoA esters. Eur J Biochem. 1977 Dec 1;81(2):259–266. doi: 10.1111/j.1432-1033.1977.tb11947.x. [DOI] [PubMed] [Google Scholar]
  11. McCarthy A. D., Aitken A., Hardie D. G., Santikarn S., Williams D. H. Amino acid sequence around the active serine in the acyl transferase domain of rabbit mammary fatty acid synthase. FEBS Lett. 1983 Aug 22;160(1-2):296–300. doi: 10.1016/0014-5793(83)80986-7. [DOI] [PubMed] [Google Scholar]
  12. McCarthy A. D., Hardie D. G. Evidence that the acyl-O-esters are intermediates in the catalysis. The mechanism of rabbit mammary fatty acid synthase. FEBS Lett. 1982 Dec 13;150(1):181–184. doi: 10.1016/0014-5793(82)81330-6. [DOI] [PubMed] [Google Scholar]
  13. Mikkelsen J., Højrup P., Rasmussen M. M., Roepstorff P., Knudsen J. Amino acid sequence around the active-site serine residue in the acyltransferase domain of goat mammary fatty acid synthetase. Biochem J. 1985 Apr 1;227(1):21–27. doi: 10.1042/bj2270021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rutkoski A., Jaworski J. G. An improved synthesis of malonyl-coenzyme A. Anal Biochem. 1978 Nov;91(1):370–373. doi: 10.1016/0003-2697(78)90854-0. [DOI] [PubMed] [Google Scholar]
  15. Smith S., Abraham S. Fatty acid synthetase from lactating rat mammary gland. I. Isolation and properties. J Biol Chem. 1970 Jun;245(12):3209–3217. [PubMed] [Google Scholar]
  16. Soulié J. M., Sheplock G. J., Tian W. X., Hsu R. Y. Transient kinetic studies of fatty acid synthetase. A kinetic self-editing mechanism for the loading of acetyl and malonyl residues and the role of coenzyme A. J Biol Chem. 1984 Jan 10;259(1):134–140. [PubMed] [Google Scholar]
  17. Stern A., Sedgwick B., Smith S. The free coenzyme A requirement of animal fatty acid synthetase. Participation in the continuous exchange of acetyl and malonyl moieties between coenzyme a thioester and enzyme. J Biol Chem. 1982 Jan 25;257(2):799–803. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES