Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jun 15;228(3):557–564. doi: 10.1042/bj2280557

Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum.

F F Morpeth
PMCID: PMC1145023  PMID: 2992449

Abstract

Cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum has been purified to homogeneity by a new procedure. The carbohydrate and amino acid compositions of the enzyme have been determined. Cellobiose oxidase contains FAD and cytochrome b prosthetic groups. Mr of the enzyme has been estimated at 74400 by sedimentation equilibrium. The enzyme is a monomer. Optical, fluorescence and e.p.r. spectra of oxidized and reduced cellobiose oxidase have been determined. A preliminary investigation of the substrate specificity of cellobiose oxidase reveals that disaccharides and even some insoluble polysaccharides are substrates, but not monosaccharides. Strong substrate inhibition is seen at high concentrations of cellobiose. This effect is particularly marked when oxygen is the electron acceptor. Cellobiose oxidase is unusual among flavoproteins, since it stabilizes the red anionic flavin semiquinone and forms a sulphite adduct, yet appears to produce the superoxide anion as its primary reduced oxygen product.

Full text

PDF
557

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayers A. R., Ayers S. B., Eriksson K. E. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem. 1978 Sep 15;90(1):171–181. doi: 10.1111/j.1432-1033.1978.tb12588.x. [DOI] [PubMed] [Google Scholar]
  2. Coudray M. R., Canevascini G., Meier H. Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile. Biochem J. 1982 Apr 1;203(1):277–284. doi: 10.1042/bj2030277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eriksson K. E., Pettersson B. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 1. Separation, purification and physico-chemical characterization of five endo-1,4-beta-glucanases. Eur J Biochem. 1975 Feb 3;51(1):193–206. doi: 10.1111/j.1432-1033.1975.tb03919.x. [DOI] [PubMed] [Google Scholar]
  4. Forney L. J., Reddy C. A., Tien M., Aust S. D. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem. 1982 Oct 10;257(19):11455–11462. [PubMed] [Google Scholar]
  5. Foust G. P., Burleigh B. D., Jr, Mayhew S. G., Williams C. H., Jr, Massey V. An anaerobic titration assembly for spectrophotometric use. Anal Biochem. 1969 Mar;27(3):530–535. doi: 10.1016/0003-2697(69)90066-9. [DOI] [PubMed] [Google Scholar]
  6. Janatova J., Fuller J. K., Hunter M. J. The heterogeneity of bovine albumin with respect to sulfhydryl and dimer content. J Biol Chem. 1968 Jul 10;243(13):3612–3622. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. MASSEY V., SWOBODA B. E. THE FLAVIN COMPOSITION OF PIG HEART MUSCLE PREPARATIONS. Biochem Z. 1963;338:474–484. [PubMed] [Google Scholar]
  9. Massey V., Hemmerich P. Active-site probes of flavoproteins. Biochem Soc Trans. 1980 Jun;8(3):246–257. doi: 10.1042/bst0080246. [DOI] [PubMed] [Google Scholar]
  10. Massey V., Palmer G. On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry. 1966 Oct;5(10):3181–3189. doi: 10.1021/bi00874a016. [DOI] [PubMed] [Google Scholar]
  11. Mayhew S. G., Whitfield C. D., Ghisla S., Schuman-Jörns M. Identification and properties of new flavins in electron-transferring flavoprotein from Peptostreptococcus elsdenii and pig-liver glycolate oxidase. Eur J Biochem. 1974 May 15;44(2):579–591. doi: 10.1111/j.1432-1033.1974.tb03515.x. [DOI] [PubMed] [Google Scholar]
  12. Pajot P. Fluroescence of proteins in 6-M guanidine hydrochloride. A method for the quantitative determination of tryptophan. Eur J Biochem. 1976 Mar 16;63(1):263–269. doi: 10.1111/j.1432-1033.1976.tb10228.x. [DOI] [PubMed] [Google Scholar]
  13. Vaish S. P., Tollin G. Flash photolysis of flavins. V. Oxidation and disproportionation of flavin radicals. J Bioenerg. 1971 May;2(2):61–72. doi: 10.1007/BF01648921. [DOI] [PubMed] [Google Scholar]
  14. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  15. Westermark U., Eriksson K. E. Purification and properties of cellobiose: quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chem Scand B. 1975;29(4):419–424. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES