Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jul 15;229(2):409–417. doi: 10.1042/bj2290409

Several dehydrogenases and kinases compete for endocytosis from plasma by rat tissues.

M K Bijsterbosch, A M Duursma, M J Smit, O J Bos, J M Bouma, M Gruber
PMCID: PMC1145073  PMID: 2994634

Abstract

Plasma contains many enzymes that are probably derived from damaged cells. These enzymes are cleared at characteristic rates. We showed previously that in rats the rapid clearance of alcohol dehydrogenase, lactate dehydrogenase M4 and the mitochondrial and cytosolic isoenzymes of malate dehydrogenase is largely due to endocytosis by macrophages in liver, spleen and bone marrow. We now demonstrate that uptake of each of the enzymes by these tissues is in general decreased by simultaneous injection of a high dose of one of the other dehydrogenases or a high dose of adenylate kinase or creatine kinase. A similar dose of colloidal albumin did not significantly decrease uptake of the four dehydrogenases. Nor was uptake of colloidal albumin, apo-peroxidase from horseradish or multilamellar liposomes influenced by a high dose of mitochondrial malate dehydrogenase. These results indicate that the four dehydrogenases and the two kinases are specifically endocytosed via the same receptor. We suggest that this receptor contains a group, possibly a nucleotide, with affinity for the nucleotide-binding sites of the enzymes.

Full text

PDF
409

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamietz P., Wielckens K., Bredehorst R., Lengyel H., Hilz H. Subcellular distribution of mono(ADP-ribose) protein conjugates in rat liver. Biochem Biophys Res Commun. 1981 Jul 16;101(1):96–103. doi: 10.1016/s0006-291x(81)80015-0. [DOI] [PubMed] [Google Scholar]
  2. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  3. BENACERRAF B., BIOZZI G., HALPERN B. N., STIFFEL C., MOUTON D. Phagocytosis of heat-denatured human serum albumin labelled with 131I and its use as a means of investigating liver blood flow. Br J Exp Pathol. 1957 Feb;38(1):35–48. [PMC free article] [PubMed] [Google Scholar]
  4. Bijsterbosch M. K., Duursma A. M., Bouma J. M., Gruber M. Endocytosis and breakdown of mitochondrial malate dehydrogenase in the rat in vivo. Effects of suramin and leupeptin. Biochem J. 1982 Oct 15;208(1):61–67. doi: 10.1042/bj2080061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bijsterbosch M. K., Duursma A. M., Bouma J. M., Gruber M. Plasma clearance and endocytosis of cytosolic malate dehydrogenase in the rat. Biochem J. 1983 Feb 15;210(2):419–428. doi: 10.1042/bj2100419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Jong A. S., Bouma J. M., Gruber M. O-(4-Diazo-3,5-di[125I]iodobenzoyl)sucrose, a novel radioactive label for determining organ sites of catabolism of plasma proteins. Biochem J. 1981 Jul 15;198(1):45–51. doi: 10.1042/bj1980045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Jong A. S., Duursma A. M., Bouma J. M., Gruber M., Brouwer A., Knook D. L. Endocytosis of lactate dehydrogenase isoenzyme M4 in rats in vivo. Experiments with enzyme labelled with O-(4-diazo-3,5-di[125I]iodobenzoyl)sucrose. Biochem J. 1982 Mar 15;202(3):655–660. doi: 10.1042/bj2020655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Degani C., Degani Y. Further evidence for nonsymmetric subunit association and intersubunit cooperativity in creatine kinase. Subunit-selective modifications by 2,4-dinitrophenylthiocyanate. J Biol Chem. 1980 Sep 10;255(17):8221–8228. [PubMed] [Google Scholar]
  9. Dietz A. A., Lubrano T. Separation and quantitation of lactic dehydrogenase isoenzymes by disc electrophoresis. Anal Biochem. 1967 Aug;20(2):246–257. doi: 10.1016/0003-2697(67)90030-9. [DOI] [PubMed] [Google Scholar]
  10. Friedel R., Bode R., Trautschold I. Verteilung heterologer, homologer und autologer Enzyme nach intravenöser Injektion: Verteilung und Transport von Zellenzymen im extrazellulären Raum. III. Mitteilung. J Clin Chem Clin Biochem. 1976 Mar;14(3):129–136. [PubMed] [Google Scholar]
  11. Frieden C., Honegger J., Gilbert H. R. Malate dehydrogenases. The lack of evidence for dissociation of the dimeric enzyme in kinetic analyses. J Biol Chem. 1978 Feb 10;253(3):816–820. [PubMed] [Google Scholar]
  12. George S., Ishikawa Y., Perryman M. B., Roberts R. Purification and characterization of naturally occurring and in vitro induced multiple forms of MM creatine kinase. J Biol Chem. 1984 Feb 25;259(4):2667–2674. [PubMed] [Google Scholar]
  13. Grisolia S., Salinas M., Wallace R., Singh G. K. Influence of size, protein concentration, protein synthesis inhibitors,and carbon on clearance of enzymes and proteins from blood. Physiol Chem Phys. 1976;8(1):37–52. [PubMed] [Google Scholar]
  14. Hilz H. ADP-ribosylation of proteins--a multifunctional process. Hoppe Seylers Z Physiol Chem. 1981 Nov;362(11):1415–1425. [PubMed] [Google Scholar]
  15. Hubbard A. L., Wilson G., Ashwell G., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J Cell Biol. 1979 Oct;83(1):47–64. doi: 10.1083/jcb.83.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jaenicke R., Knof S. Molecular weight and quaternary structure of lactic dehydrogenase. 3. Comparative determination by sedimentation analysis, light scattering and osmosis. Eur J Biochem. 1968 Apr 3;4(2):157–163. doi: 10.1111/j.1432-1033.1968.tb00187.x. [DOI] [PubMed] [Google Scholar]
  17. Kooistra T., Duursma A. M., Bijsterbosch M. K., Bouma J. M., Gruber M. Endocytosis and breakdown of ribonuclease oligomers by sinusoidal rat liver cells in vivo. II. Effect of charge. Biochim Biophys Acta. 1979 Oct 4;587(2):299–311. doi: 10.1016/0304-4165(79)90362-3. [DOI] [PubMed] [Google Scholar]
  18. Kooistra T., Duursma A. M., Bouma J. M., Gruber M. Endocytosis and breakdown of ribonuclease oligomers by sinusoidal rat liver cells in vivo. I. Effect of size. Biochim Biophys Acta. 1979 Oct 4;587(2):282–298. doi: 10.1016/0304-4165(79)90361-1. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Milner-White E. J., Watts D. C. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J. 1971 May;122(5):727–740. doi: 10.1042/bj1220727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morgan E. H. Plasma protein turnover and transmission to the milk in the rat. Biochim Biophys Acta. 1968 Apr 9;154(3):478–487. doi: 10.1016/0005-2795(68)90007-x. [DOI] [PubMed] [Google Scholar]
  23. Pai E. F., Sachsenheimer W., Schirmer R. H., Schulz G. E. Substrate positions and induced-fit in crystalline adenylate kinase. J Mol Biol. 1977 Jul;114(1):37–45. doi: 10.1016/0022-2836(77)90281-9. [DOI] [PubMed] [Google Scholar]
  24. Praaning-Van Dalen D. P., Knook D. L. Quantitative determination of in vivo endocytosis by rat liver Kupffer and endothelial cells facilitated by an improved cell isolation method. FEBS Lett. 1982 May 17;141(2):229–232. doi: 10.1016/0014-5793(82)80054-9. [DOI] [PubMed] [Google Scholar]
  25. Praaning-van Dalen D. P., Brouwer A., Knook D. L. Clearance capacity of rat liver Kupffer, Endothelial, and parenchymal cells. Gastroenterology. 1981 Dec;81(6):1036–1044. [PubMed] [Google Scholar]
  26. Rodman J. S., Schlesinger P., Stahl P. Rat plasma clearance of horseradish peroxidase and yeast invertase is mediated by specific recognition. FEBS Lett. 1978 Jan 15;85(2):345–348. doi: 10.1016/0014-5793(78)80488-8. [DOI] [PubMed] [Google Scholar]
  27. Roerdink F., Dijkstra J., Hartman G., Bolscher B., Scherphof G. The involvement of parenchymal, Kupffer and endothelial liver cells in the hepatic uptake of intravenously injected liposomes. Effects of lanthanum and gadolinium salts. Biochim Biophys Acta. 1981 Sep 18;677(1):79–89. doi: 10.1016/0304-4165(81)90148-3. [DOI] [PubMed] [Google Scholar]
  28. Schirmer I., Schirmer R. H., Schulz G. E., Thuma E. Purification, characterization and crystallization of pork myokinase. FEBS Lett. 1970 Oct;10(5):333–338. doi: 10.1016/0014-5793(70)80466-5. [DOI] [PubMed] [Google Scholar]
  29. Schulz G. E., Schirmer R. H. Topological comparison of adenyl kinase with other proteins. Nature. 1974 Jul 12;250(462):142–144. doi: 10.1038/250142a0. [DOI] [PubMed] [Google Scholar]
  30. Sinke J., Bouma J. M., Kooistra T., Gruber M. Endocytosis and breakdown of 125I-labelled lactate dehydrogenase isoenzyme M4 by rat liver and spleen in vivo. Biochem J. 1979 Apr 15;180(1):1–9. doi: 10.1042/bj1800001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Theorell H., Taniguchi S., Akeson A., Skurský L. Crystallization of a separate steroid-active liver alcohol dehydrogenase. Biochem Biophys Res Commun. 1966 Sep 8;24(5):603–610. doi: 10.1016/0006-291x(66)90365-2. [DOI] [PubMed] [Google Scholar]
  32. Thompson S. T., Cass K. H., Stellwagen E. Blue dextran-sepharose: an affinity column for the dinucleotide fold in proteins. Proc Natl Acad Sci U S A. 1975 Feb;72(2):669–672. doi: 10.1073/pnas.72.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wachsmuth E. D., Klingmüller D. Reduction of plasma clearance rates and immune response by negative charges: lactic dehydrogenase isoenzymes in normal and LDV-infected mice. J Reticuloendothel Soc. 1978 Sep;24(3):227–241. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES