Abstract
Isolated perfused rat kidneys removed considerable quantities of glycyltyrosine, glycylhydroxyproline, tetraglycine and prolylhydroxyproline from the perfusate. The component amino acids are released into the perfusate and, in the case of the glycine-containing peptides, there is increased synthesis of serine. Removal of peptides was more than could be accounted for on the basis of filtration, so antiluminal metabolism is indicated. Metabolism of such peptides by the kidney may contribute to renal serine synthesis in vivo.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adibi S. A., Krzysik B. A. Effect of nephrectomy and enterectomy on plasma clearance of intravenously administered dipeptides in rats. Clin Sci Mol Med. 1977 Feb;52(2):205–213. doi: 10.1042/cs0520205. [DOI] [PubMed] [Google Scholar]
- Adibi S. A., Morse E. L. Enrichment of glycine pool in plasma and tissues by glycine, di-, tri-, and tetraglycine. Am J Physiol. 1982 Nov;243(5):E413–E417. doi: 10.1152/ajpendo.1982.243.5.E413. [DOI] [PubMed] [Google Scholar]
- Bourdeau J. E., Carone F. A., Ganote C. E. Serum albumin uptake in isolated perfused renal tubules. Quantitative and electron microscope radioautographic studies in three anatomical segments of the rabbit nephron. J Cell Biol. 1972 Aug;54(2):382–398. doi: 10.1083/jcb.54.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brosnan J. T., Man K. C., Hall D. E., Colbourne S. A., Brosnan M. E. Interorgan metabolism of amino acids in streptozotocin-diabetic ketoacidotic rat. Am J Physiol. 1983 Feb;244(2):E151–E158. doi: 10.1152/ajpendo.1983.244.2.E151. [DOI] [PubMed] [Google Scholar]
- Carone F. A., Peterson D. R. Hydrolysis and transport of small peptides by the proximal tubule. Am J Physiol. 1980 Mar;238(3):F151–F158. doi: 10.1152/ajprenal.1980.238.3.F151. [DOI] [PubMed] [Google Scholar]
- Carone F. A., Peterson D. R., Oparil S., Pullman T. N. Renal tubular transport and catabolism of proteins and peptides. Kidney Int. 1979 Sep;16(3):271–278. doi: 10.1038/ki.1979.129. [DOI] [PubMed] [Google Scholar]
- Forissier M., Baverel G. The conversion of alanine into glutamine in guinea-pig renal cortex. Essential role of pyruvate carboxylase. Biochem J. 1981 Oct 15;200(1):27–33. doi: 10.1042/bj2000027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganapathy V., Leibach F. H. Peptide transport in rabbit kidney. Studies with L-carnosine. Biochim Biophys Acta. 1982 Oct 7;691(2):362–366. doi: 10.1016/0005-2736(82)90427-8. [DOI] [PubMed] [Google Scholar]
- Ganapathy V., Leibach F. H. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J Biol Chem. 1983 Dec 10;258(23):14189–14192. [PubMed] [Google Scholar]
- Ganapathy V., Mendicino J. F., Leibach F. H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981 Jan 10;256(1):118–124. [PubMed] [Google Scholar]
- Katz A. I., Rubenstein A. H. Metabolism of proinsulin, insulin, and C-peptide in the rat. J Clin Invest. 1973 May;52(5):1113–1121. doi: 10.1172/JCI107277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenny A. J., Booth A. G. Microvilli: their ultrastructure, enzymology and molecular organization. Essays Biochem. 1978;14:1–44. [PubMed] [Google Scholar]
- Maack T., Johnson V., Kau S. T., Figueiredo J., Sigulem D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 1979 Sep;16(3):251–270. doi: 10.1038/ki.1979.128. [DOI] [PubMed] [Google Scholar]
- Matthews D. M. Intestinal absorption of peptides. Physiol Rev. 1975 Oct;55(4):537–608. doi: 10.1152/physrev.1975.55.4.537. [DOI] [PubMed] [Google Scholar]
- McCormick M. E., Webb K. E., Jr Plasma free, erythrocyte free and plasma peptide amino acid exchange to calves in steady state and fasting metabolism. J Nutr. 1982 Feb;112(2):276–282. doi: 10.1093/jn/112.2.276. [DOI] [PubMed] [Google Scholar]
- Nutzenadel W., Scriver C. R. Uptake and metabolism of beta-alanine and L-carnosine by rat tissues in vitro: role in nutrition. Am J Physiol. 1976 Mar;230(3):643–651. doi: 10.1152/ajplegacy.1976.230.3.643. [DOI] [PubMed] [Google Scholar]
- Pitts R. F., MacLeod M. B. Synthesis of serine by the dog kidney in vivo. Am J Physiol. 1972 Feb;222(2):394–398. doi: 10.1152/ajplegacy.1972.222.2.394. [DOI] [PubMed] [Google Scholar]
- Powell G. F., Rasco M. A., Maniscalco R. M. A prolidase deficiency in man with iminopeptiduria. Metabolism. 1974 Jun;23(6):505–513. doi: 10.1016/0026-0495(74)90078-x. [DOI] [PubMed] [Google Scholar]
- Pullman T. N., Carone F. A., Oparil S., Nakamura S. Effects of constituent amino acids on tubular handling of microinfused angiotensin II. Am J Physiol. 1978 Apr;234(4):F325–F331. doi: 10.1152/ajprenal.1978.234.4.F325. [DOI] [PubMed] [Google Scholar]
- Rabkin R., Kitaji J. Renal metabolism of peptide hormones. Miner Electrolyte Metab. 1983;9(4-6):212–226. [PubMed] [Google Scholar]
- Ross B. D., Epstein F. H., Leaf A. Sodium reabsorption in the perfused rat kidney. Am J Physiol. 1973 Nov;225(5):1165–1171. doi: 10.1152/ajplegacy.1973.225.5.1165. [DOI] [PubMed] [Google Scholar]
- Silbernagl S., Völkl H. The role of brush border enzymes in renal tubular transport of peptides, disaccharides and amino acids. Curr Probl Clin Biochem. 1977 Oct 23;8:59–65. [PubMed] [Google Scholar]
- Tate S. S., Meister A. Regulation of rat liver glutamine synthetase: activation by alpha-ketoglutarate and inhibition by glycine, alanine, and carbamyl phosphate. Proc Natl Acad Sci U S A. 1971 Apr;68(4):781–785. doi: 10.1073/pnas.68.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tizianello A., De Ferrari G., Garibotto G., Gurreri G., Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980 May;65(5):1162–1173. doi: 10.1172/JCI109771. [DOI] [PMC free article] [PubMed] [Google Scholar]
