Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Aug 1;229(3):595–603. doi: 10.1042/bj2290595

Alpha-fucosidase-ganglioside interactions. Action of alpha-L-fucosidase from the hepatopancreas of Octopus vulgaris on a fucose-containing ganglioside (Fuc-GM1).

M Masserini, A Giuliani, B Venerando, A Fiorilli, A D'Aniello, G Tettamanti
PMCID: PMC1145101  PMID: 4052012

Abstract

alpha-L-Fucosidase, prepared in highly purified form (Mr 70 000-74 000) from Octopus hepatopancreas, was able to hydrolyse a fucose-containing ganglioside, namely Fuc-GM1 (II3NeuAc,IV2Fuc-GgOse4-Cer). The enzyme showed an irregular kinetic behaviour (v/[S] and v/[E] relationships following sigmoidal curves) when working on micellar Fuc-GM1 (Mr of the micelle 500 000), but obeyed regular hyperbolic kinetics when acting on low-Mr substances. It was observed that, on incubation with micellar Fuc-GM1 under the conditions used for the enzyme assay, Octopus alpha-L-fucosidase produced a ganglioside-enzyme complex that was catalytically inactive. This complex had an Mr exceeding 500 000 and a ganglioside/protein ratio of 4:1 (w/w), which is consistent with a stoichiometric combination of one ganglioside micelle with two enzyme molecules. Inactivation of alpha-L-fucosidase by formation of the corresponding complexes was also obtained with micellar gangliosides GM1 (II3NeuAc-GgOse4-Cer), GD1a (II3NeuAc,IV3NeuAc-GgOse4-Cer) and GT1b [II3(NeuAc)2,IV3-NeuAc-GgOse4-Cer], which are not substrates for the enzyme, indicating that the ganglioside micelles per se act as enzyme inhibitors. However, alpha-L-fucosidase easily forms a Fuc-GM1-alpha-L-fucosidase complex, displaying regular Michaelis-Menten kinetics. Therefore the anomalous behaviour exhibited by alpha-L-fucosidase on micellar Fuc-GM1 is likely due to formation of the complex, which separates the fucosyl linkage from the active site of the complexed enzyme, but makes it available to the enzyme in the free form.

Full text

PDF
595

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Corti M., Degiorgio V., Ghidoni R., Sonnino S., Tettamanti G. Laser-light scattering investigation of the micellar properties of gangliosides. Chem Phys Lipids. 1980 Apr;26(3):225–238. doi: 10.1016/0009-3084(80)90053-5. [DOI] [PubMed] [Google Scholar]
  2. Curatolo W., Small D. M., Shipley G. G. Phase behavior and structural characteristics of hydrated bovine brain gangliosides. Biochim Biophys Acta. 1977 Jul 4;468(1):11–20. doi: 10.1016/0005-2736(77)90147-x. [DOI] [PubMed] [Google Scholar]
  3. D'Aniello A., Hakimi J., Cacace G. M., Ceccarini C. The purification and characterization of alpha-L-fucosidase from the hepatopancreas of Octopus vulgaris. J Biochem. 1982 Mar;91(3):1073–1080. doi: 10.1093/oxfordjournals.jbchem.a133756. [DOI] [PubMed] [Google Scholar]
  4. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawson G., Spranger J. W. Fucosidosis: a glycosphingolipidosis. N Engl J Med. 1971 Jul 8;285(2):122–122. doi: 10.1056/NEJM197107082850219. [DOI] [PubMed] [Google Scholar]
  6. Formisano S., Johnson M. L., Lee G., Aloj S. M., Edelhoch H. Critical micelle concentrations of gangliosides. Biochemistry. 1979 Mar 20;18(6):1119–1124. doi: 10.1021/bi00573a028. [DOI] [PubMed] [Google Scholar]
  7. Gatt S., Bartfai T. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids. Biochim Biophys Acta. 1977 Jul 20;488(1):1–12. doi: 10.1016/0005-2760(77)90117-5. [DOI] [PubMed] [Google Scholar]
  8. Ghidoni R., Sonnino S., Masserini M., Orlando P., Tettamanti G. Specific tritium labeling of gangliosides at the 3-position of sphingosines. J Lipid Res. 1981 Nov;22(8):1286–1295. [PubMed] [Google Scholar]
  9. Ghidoni R., Sonnino S., Tettamanti G., Baumann N., Reuter G., Schauer R. Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-O-acetyl-N-acetylneuraminic acid. J Biol Chem. 1980 Jul 25;255(14):6990–6995. [PubMed] [Google Scholar]
  10. Kochibe N. Purification and properties of alpha-L-fucosidase from Bacillus fulminans. J Biochem. 1973 Dec;74(6):1141–1149. doi: 10.1093/oxfordjournals.jbchem.a130341. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Reglero A., Cabezas J. A. Glycosidases of molluscs. Purification and properties of alpha-L-fucosidase from Chamelea gallina L. Eur J Biochem. 1976 Jul 1;66(2):379–387. doi: 10.1111/j.1432-1033.1976.tb10527.x. [DOI] [PubMed] [Google Scholar]
  13. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  14. Sonnino S., Ghidoni R., Galli G., Tettamanti G. On the structure of a new, fucose containing ganglioside from pig cerebellum. J Neurochem. 1978 Oct;31(4):947–956. doi: 10.1111/j.1471-4159.1978.tb00132.x. [DOI] [PubMed] [Google Scholar]
  15. Tettamanti G., Bonali F., Marchesini S., Zambotti V. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta. 1973 Jan 19;296(1):160–170. doi: 10.1016/0005-2760(73)90055-6. [DOI] [PubMed] [Google Scholar]
  16. Tomasi M., Roda L. G., Ausiello C., D'Agnolo G., Venerando B., Ghidoni R., Sonnino S., Tettamanti G. Interaction of GMI ganglioside with bovine serum albumin: formation and isolation of multiple complexes. Eur J Biochem. 1980 Oct;111(2):315–324. doi: 10.1111/j.1432-1033.1980.tb04944.x. [DOI] [PubMed] [Google Scholar]
  17. Van Hoof F., Hers H. G. Mucopolysaccharidosis by absence of alpha-fucosidase. Lancet. 1968 Jun 1;1(7553):1198–1198. doi: 10.1016/s0140-6736(68)91895-3. [DOI] [PubMed] [Google Scholar]
  18. Venerando B., Fiorilli A., Masserini M., Giuliani A., Tettamanti G. Interactions of pig brain cytosolic sialidase with gangliosides. Formation of catalytically inactive enzyme-ganglioside complexes. Biochim Biophys Acta. 1985 Jan 9;833(1):82–92. doi: 10.1016/0005-2760(85)90255-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES