Skip to main content
IUCrData logoLink to IUCrData
. 2024 Sep 17;9(Pt 9):x240893. doi: 10.1107/S2414314624008939

Δ-Bis[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N′)ruthenium(III) hexa­fluorido­phosphate

Monsuru T Kelani a,*, Alfred Muller a, Koop Lammertsma a
Editor: M Weilb
PMCID: PMC11451036  PMID: 39371669

The title compound is an example for a chiral-at-metal complex, with the RuIII atom having an octa­hedral coordination environment by three bidentate ligands.

Keywords: crystal structure, absolute configuration, ruthenium, chiral-at-metal complex

Abstract

The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra­gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octa­hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is −0.003 (14)]. Both the complex cation and the disordered PF6 counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C—H⋯O and C—H⋯F inter­actions.graphic file with name x-09-x240893-scheme1-3D1.jpg

Structure description

The syntheses of optically pure metal complexes are usually costly and sophisticated, especially with the use of traditional methods for the resolution of racemic mixtures. A straightforward alternative strategy, therefore, requires the coordination of pure chiral auxiliary ligands tailored for the selective synthesis of diastereomers, which are easily converted to the corresponding enanti­omerically pure complexes (Knof & von Zelewsky, 1999). Hayoz and co-workers were the first to report the diastereoselective synthesis of optically pure ruthenium polypyridyl complexes in the quest for generating compounds with metal-centered chirality, so-called chiral-at-metal complexes (Hayoz et al., 1993). Such metal-centered chirality refers to the type of chirality induced at a central metal atom as a result of an helical octa­hedral coordination around a metal in bis-chelate or tris-chelate systems. In this context, optically pure salicyloxazoline is often used as an auxiliary ligand to implement and control the absolute configuration at central metal atoms during ligand exchange. In this case, the absolute configurations at the central metal could either be right-handed or left-handed twist systems, which are symbolized by Δ and Λ stereochemical descriptors, respectively (Gong et al., 2010). The salicyloxazoline ligand is often used in this manner because of its reversible coordination upon acid protonation of its phenolate group while leaving the stereochemistry of the metal complex intact (Gong et al., 2009, 2010, 2013).

The complex cation of the title salt constitutes of two optically pure bidentate salicyloxazoline ligands and a phenanthroline co-ligand arranged within an octa­hedral coordination sphere around the central RuIII atom, which is located about a twofold rotation axis bis­ecting the phenantroline ligand (Fig. 1). This right-handed twist of the ligands leads to a Δ stereochemical configuration of the complex; the correctness of the absolute configuration is indicated by a Flack parameter (Parsons et al., 2013) value of −0.003 (14). The bite angles, 89.76 (15)°, for the salicyloxazoline ligands are comparable with reported values, e.g. 86.68° (Brunner et al., 1998), 88.29° (Davenport et al., 2004), 86.88° (Kelani et al., 2024), or 90.00 (Gong et al., 2010) while that for the phenanthroline ligand, 79.0 (2)°, is almost similar to that of 80.12° (Gong et al., 2010). The bond lengths of the RuIII atom with the ligating atoms of 1.974 (3), 2.079 (4) and 2.072 (4) Å to O1, N1(phenanthroline) and N2(salicyloxazoline) atoms, respectively, also agree well with reported values. The crystal packing (Fig. 2) includes the disordered PF6 counter-anion (located about a twofold rotation axis). Non-classical inter­molecular inter­actions featuring C—H⋯O and C—H⋯F contacts (Table 1) are present.

Figure 1.

Figure 1

The mol­ecular structure of the title compound drawn with displacement ellipsoids at the 50% probability level; hydrogen atoms and the PF6 counter-anion were removed for clarity. Non-labelled atoms are generated by a twofold rotation axis (symmetry operation: y, x, –z).

Figure 2.

Figure 2

Crystal packing arrangement of the title compound in a view along the c axis. Non-classical hydrogen-bonding inter­actions are indicated by dotted lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.59 3.102 (6) 114
C16—H16⋯O1i 1.00 2.53 3.224 (6) 126
C17—H17A⋯F3ii 0.98 2.52 3.464 (11) 162
C18—H18A⋯F2 0.98 2.48 3.357 (12) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Synthesis and crystallization

Di­chlorido-bis­(1,10-phenanthroline)ruthenium(II) (50.0 mg, 0.09 mmol, 1 eq) was added to (S)-isopropyl-2-(2-hy­droxy­phen­yl)oxazoline (38.5 mg, 0.2 mmol, 2 eq) in ethanol in the presence of K2CO3 (26.0 mg, 0.2 mmol, 2 eq). The reaction mixture was refluxed for 6 h under continuous stirring after which it was cooled to room temperature and then concentrated in vacuo under reduced pressure. The crude product was purified by column chromatography with silica gel using a solvent system of CH2Cl2:CH3OH:CH3CN = 9.7:0.2:0.1 v:v:v) to obtain a purple crystalline compound. Yield, 31 mg (46%, 0.04 mmol).

Refinement

Details of the data collection, solution and refinement are given in Table 2. The disordered PF6 anion was treated as equally disordered around the twofold rotation axis and was kept stable with SADI, SIMU and DELU restraints in SHELXL (Sheldrick, 2015b). The highest remaining maximum and minimum electron density are 1.32 and 0.76 Å away from F1A and Ru1, respectively.

Table 2. Experimental details.

Crystal data
Chemical formula [Ru(C12H14NO2)2(C12H8N2)]PF6
M r 834.73
Crystal system, space group Tetragonal, P41212
Temperature (K) 173
a, c (Å) 15.3094 (13), 15.315 (2)
V3) 3589.5 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.46 × 0.43 × 0.42
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 53896, 4516, 3564
R int 0.067
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.04
No. of reflections 4516
No. of parameters 245
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.41
Absolute structure Flack x determined using 1296 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter −0.003 (14)

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), Mercury (Macrae et al.., 2020), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624008939/wm4221sup1.cif

x-09-x240893-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624008939/wm4221Isup3.hkl

x-09-x240893-Isup3.hkl (360.1KB, hkl)

CCDC reference: 2383614

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, for the opportunity provided towards the collection of the data.

full crystallographic data

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Crystal data

[Ru(C12H14NO2)2(C12H8N2)]PF6 Dx = 1.545 Mg m3
Mr = 834.73 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 8341 reflections
a = 15.3094 (13) Å θ = 2.3–20.4°
c = 15.315 (2) Å µ = 0.56 mm1
V = 3589.5 (8) Å3 T = 173 K
Z = 4 Cuboid, purple
F(000) = 1700 0.46 × 0.43 × 0.42 mm

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Data collection

Bruker APEXII CCD diffractometer 4516 independent reflections
Radiation source: sealed-tube 3564 reflections with I > 2σ(I)
Triumph monochromator Rint = 0.067
φ and ω scans θmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −20→20
Tmin = 0.638, Tmax = 0.746 k = −20→20
53896 measured reflections l = −20→20

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.7144P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4516 reflections Δρmax = 0.38 e Å3
245 parameters Δρmin = −0.41 e Å3
26 restraints Absolute structure: Flack x determined using 1296 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.003 (14)

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2882 (4) 0.4278 (4) 0.6429 (3) 0.0615 (13)
H1 0.237967 0.400278 0.666771 0.074*
C2 0.3215 (4) 0.5005 (4) 0.6832 (4) 0.0760 (18)
H2 0.294934 0.521584 0.735125 0.091*
C3 0.3917 (5) 0.5426 (4) 0.6499 (4) 0.0828 (19)
H3 0.412522 0.594417 0.676826 0.099*
C4 0.4345 (4) 0.5090 (4) 0.5742 (4) 0.0615 (13)
C5 0.3979 (3) 0.4353 (3) 0.5381 (3) 0.0463 (10)
C6 0.5100 (4) 0.5455 (4) 0.5356 (4) 0.0723 (16)
H6 0.535851 0.595990 0.560765 0.087*
C7 0.3015 (3) 0.1129 (3) 0.4108 (3) 0.0539 (12)
C8 0.2786 (4) 0.0607 (4) 0.3381 (3) 0.0678 (14)
H8 0.238849 0.082913 0.295931 0.081*
C9 0.3130 (5) −0.0217 (4) 0.3273 (4) 0.0815 (19)
H9 0.295857 −0.055716 0.278301 0.098*
C10 0.3710 (5) −0.0552 (4) 0.3853 (5) 0.0852 (19)
H10 0.393287 −0.112595 0.377536 0.102*
C11 0.3975 (4) −0.0054 (4) 0.4556 (5) 0.0759 (17)
H11 0.439237 −0.028411 0.495301 0.091*
C12 0.3633 (4) 0.0795 (3) 0.4695 (3) 0.0592 (12)
C13 0.3904 (3) 0.1261 (4) 0.5476 (3) 0.0553 (12)
C14 0.4704 (4) 0.1478 (5) 0.6678 (4) 0.0838 (19)
H14A 0.529714 0.171713 0.658200 0.101*
H14B 0.468526 0.119533 0.725909 0.101*
C15 0.4011 (3) 0.2208 (4) 0.6615 (3) 0.0618 (13)
H15 0.430056 0.279348 0.662139 0.074*
C16 0.3308 (4) 0.2163 (4) 0.7321 (3) 0.0730 (15)
H16 0.285475 0.260943 0.717068 0.088*
C17 0.2847 (5) 0.1280 (5) 0.7371 (4) 0.102 (2)
H17A 0.240548 0.129560 0.783417 0.152*
H17B 0.256291 0.115575 0.681064 0.152*
H17C 0.327529 0.082258 0.749904 0.152*
C18 0.3698 (6) 0.2424 (7) 0.8209 (4) 0.122 (3)
H18A 0.398851 0.299210 0.815570 0.183*
H18B 0.323026 0.246367 0.864392 0.183*
H18C 0.412379 0.198299 0.839249 0.183*
N1 0.3248 (2) 0.3946 (3) 0.5709 (2) 0.0483 (9)
N2 0.3638 (3) 0.2026 (3) 0.5728 (2) 0.0523 (9)
O1 0.2614 (2) 0.1896 (2) 0.4175 (2) 0.0570 (9)
O2 0.4479 (3) 0.0854 (3) 0.5994 (3) 0.0767 (11)
F1A 0.6349 (16) 0.2780 (8) 0.7374 (14) 0.203 (8) 0.5
F1B 0.6026 (17) 0.3041 (13) 0.8114 (17) 0.250 (11) 0.5
F2 0.5257 (5) 0.3866 (6) 0.7660 (8) 0.247 (5)
F3 0.6459 (7) 0.4151 (7) 0.8395 (6) 0.241 (4)
P1 0.6246 (2) 0.3754 (2) 0.750000 0.1405 (16)
Ru1 0.28566 (2) 0.28566 (2) 0.500000 0.04461 (15)

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.049 (3) 0.084 (4) 0.051 (2) 0.001 (3) 0.006 (2) −0.025 (2)
C2 0.064 (3) 0.093 (4) 0.072 (3) 0.001 (3) 0.007 (3) −0.046 (3)
C3 0.096 (5) 0.072 (4) 0.080 (4) 0.000 (3) −0.015 (4) −0.036 (3)
C4 0.060 (3) 0.062 (3) 0.063 (3) −0.004 (2) −0.009 (3) −0.013 (3)
C5 0.046 (2) 0.048 (2) 0.046 (2) 0.0082 (19) −0.0020 (19) −0.0070 (19)
C6 0.067 (4) 0.060 (3) 0.090 (4) −0.017 (3) −0.005 (3) −0.006 (3)
C7 0.063 (3) 0.050 (3) 0.049 (2) −0.013 (2) 0.009 (2) −0.0008 (19)
C8 0.076 (4) 0.068 (3) 0.060 (3) −0.015 (3) 0.009 (3) −0.015 (3)
C9 0.098 (5) 0.065 (4) 0.081 (4) −0.015 (3) 0.020 (4) −0.025 (3)
C10 0.091 (5) 0.059 (4) 0.106 (5) −0.001 (3) 0.021 (4) −0.018 (4)
C11 0.069 (4) 0.060 (3) 0.099 (4) 0.001 (3) 0.020 (3) −0.003 (3)
C12 0.063 (3) 0.056 (3) 0.060 (3) −0.006 (2) 0.013 (2) 0.005 (2)
C13 0.055 (3) 0.057 (3) 0.054 (3) −0.001 (2) 0.004 (2) 0.004 (2)
C14 0.078 (4) 0.108 (5) 0.066 (3) 0.011 (4) −0.018 (3) 0.017 (4)
C15 0.063 (3) 0.073 (3) 0.049 (2) −0.003 (3) −0.012 (2) 0.005 (3)
C16 0.076 (3) 0.098 (4) 0.044 (3) −0.001 (4) −0.003 (2) 0.001 (3)
C17 0.110 (5) 0.124 (6) 0.071 (4) −0.029 (5) 0.013 (4) 0.019 (4)
C18 0.125 (6) 0.195 (10) 0.047 (3) −0.025 (6) −0.005 (4) −0.020 (4)
N1 0.042 (2) 0.061 (2) 0.0424 (18) 0.0039 (17) −0.0001 (16) −0.0117 (17)
N2 0.054 (2) 0.064 (3) 0.0390 (16) −0.0075 (19) −0.0008 (16) 0.0044 (19)
O1 0.071 (2) 0.0503 (19) 0.0500 (17) −0.0074 (16) −0.0063 (16) −0.0046 (14)
O2 0.082 (3) 0.072 (3) 0.075 (3) 0.009 (2) −0.015 (2) 0.012 (2)
F1A 0.29 (2) 0.091 (7) 0.225 (17) 0.020 (10) −0.067 (18) −0.003 (11)
F1B 0.24 (2) 0.145 (16) 0.36 (3) −0.025 (16) 0.01 (2) 0.080 (16)
F2 0.149 (6) 0.235 (9) 0.357 (14) −0.025 (6) −0.022 (8) −0.047 (11)
F3 0.268 (10) 0.262 (11) 0.194 (8) −0.019 (9) −0.078 (8) −0.046 (8)
P1 0.1223 (17) 0.1223 (17) 0.177 (4) −0.025 (2) −0.051 (2) −0.051 (2)
Ru1 0.04954 (19) 0.04954 (19) 0.0347 (2) −0.0046 (2) 0.00213 (16) −0.00213 (16)

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Geometric parameters (Å, º)

C1—N1 1.337 (5) C13—N2 1.299 (7)
C1—C2 1.370 (8) C13—O2 1.338 (6)
C1—H1 0.9500 C14—O2 1.458 (7)
C2—C3 1.353 (9) C14—C15 1.544 (8)
C2—H2 0.9500 C14—H14A 0.9900
C3—C4 1.426 (8) C14—H14B 0.9900
C3—H3 0.9500 C15—N2 1.499 (6)
C4—C5 1.375 (7) C15—C16 1.528 (7)
C4—C6 1.414 (8) C15—H15 1.0000
C5—N1 1.376 (6) C16—C17 1.527 (10)
C5—C5i 1.421 (8) C16—C18 1.538 (8)
C6—C6i 1.335 (12) C16—H16 1.0000
C6—H6 0.9500 C17—H17A 0.9800
C7—O1 1.329 (6) C17—H17B 0.9800
C7—C12 1.402 (7) C17—H17C 0.9800
C7—C8 1.414 (7) C18—H18A 0.9800
C8—C9 1.377 (9) C18—H18B 0.9800
C8—H8 0.9500 C18—H18C 0.9800
C9—C10 1.356 (10) N1—Ru1 2.079 (4)
C9—H9 0.9500 N2—Ru1 2.072 (4)
C10—C11 1.380 (9) O1—Ru1 1.974 (3)
C10—H10 0.9500 F1A—P1 1.512 (12)
C11—C12 1.418 (8) F1B—P1 1.479 (14)
C11—H11 0.9500 F2—P1 1.544 (8)
C12—C13 1.453 (7) F3—P1 1.535 (8)
N1—C1—C2 121.6 (5) H17A—C17—H17B 109.5
N1—C1—H1 119.2 C16—C17—H17C 109.5
C2—C1—H1 119.2 H17A—C17—H17C 109.5
C3—C2—C1 120.8 (5) H17B—C17—H17C 109.5
C3—C2—H2 119.6 C16—C18—H18A 109.5
C1—C2—H2 119.6 C16—C18—H18B 109.5
C2—C3—C4 120.0 (5) H18A—C18—H18B 109.5
C2—C3—H3 120.0 C16—C18—H18C 109.5
C4—C3—H3 120.0 H18A—C18—H18C 109.5
C5—C4—C6 119.3 (5) H18B—C18—H18C 109.5
C5—C4—C3 115.8 (5) C1—N1—C5 118.0 (4)
C6—C4—C3 124.9 (5) C1—N1—Ru1 127.9 (4)
C4—C5—N1 123.8 (4) C5—N1—Ru1 114.1 (3)
C4—C5—C5i 119.8 (3) C13—N2—C15 108.5 (4)
N1—C5—C5i 116.4 (2) C13—N2—Ru1 125.1 (3)
C6i—C6—C4 120.9 (3) C15—N2—Ru1 126.4 (4)
C6i—C6—H6 119.5 C7—O1—Ru1 128.4 (3)
C4—C6—H6 119.5 C13—O2—C14 106.1 (4)
O1—C7—C12 125.7 (4) F1B—P1—F1Bii 138 (2)
O1—C7—C8 116.5 (5) F1B—P1—F1Aii 93.8 (14)
C12—C7—C8 117.8 (5) F1Bii—P1—F1Aii 51.5 (10)
C9—C8—C7 121.1 (6) F1A—P1—F1Aii 79.1 (18)
C9—C8—H8 119.4 F1B—P1—F3 76.9 (11)
C7—C8—H8 119.4 F1Bii—P1—F3 108.7 (11)
C10—C9—C8 121.2 (6) F1A—P1—F3 118.9 (9)
C10—C9—H9 119.4 F1Aii—P1—F3 73.6 (8)
C8—C9—H9 119.4 F1B—P1—F3ii 108.7 (11)
C9—C10—C11 119.6 (6) F1Bii—P1—F3ii 76.9 (11)
C9—C10—H10 120.2 F1A—P1—F3ii 73.6 (8)
C11—C10—H10 120.2 F1Aii—P1—F3ii 118.9 (9)
C10—C11—C12 121.0 (7) F3—P1—F3ii 165.1 (9)
C10—C11—H11 119.5 F1B—P1—F2 75.9 (10)
C12—C11—H11 119.5 F1Bii—P1—F2 143.1 (12)
C7—C12—C11 119.1 (5) F1A—P1—F2 103.4 (10)
C7—C12—C13 122.9 (5) F1Aii—P1—F2 163.5 (9)
C11—C12—C13 117.9 (5) F3—P1—F2 91.3 (7)
N2—C13—O2 116.7 (4) F3ii—P1—F2 77.1 (5)
N2—C13—C12 126.7 (5) F1B—P1—F2ii 143.1 (12)
O2—C13—C12 116.6 (5) F1Bii—P1—F2ii 75.9 (10)
O2—C14—C15 105.4 (4) F1A—P1—F2ii 163.5 (9)
O2—C14—H14A 110.7 F1Aii—P1—F2ii 103.4 (10)
C15—C14—H14A 110.7 F3—P1—F2ii 77.1 (5)
O2—C14—H14B 110.7 F3ii—P1—F2ii 91.3 (7)
C15—C14—H14B 110.7 F2—P1—F2ii 78.9 (8)
H14A—C14—H14B 108.8 O1—Ru1—O1i 97.4 (2)
N2—C15—C16 111.3 (4) O1—Ru1—N2 89.76 (15)
N2—C15—C14 100.6 (4) O1i—Ru1—N2 88.30 (15)
C16—C15—C14 114.1 (5) O1—Ru1—N2i 88.30 (15)
N2—C15—H15 110.2 O1i—Ru1—N2i 89.77 (15)
C16—C15—H15 110.2 N2—Ru1—N2i 177.1 (2)
C14—C15—H15 110.2 O1—Ru1—N1 170.53 (15)
C17—C16—C15 113.6 (5) O1i—Ru1—N1 91.80 (15)
C17—C16—C18 111.4 (5) N2—Ru1—N1 92.57 (16)
C15—C16—C18 109.9 (5) N2i—Ru1—N1 89.70 (15)
C17—C16—H16 107.2 O1—Ru1—N1i 91.80 (15)
C15—C16—H16 107.2 O1i—Ru1—N1i 170.53 (15)
C18—C16—H16 107.2 N2—Ru1—N1i 89.70 (15)
C16—C17—H17A 109.5 N2i—Ru1—N1i 92.56 (16)
C16—C17—H17B 109.5 N1—Ru1—N1i 79.0 (2)
N1—C1—C2—C3 1.6 (10) O2—C14—C15—N2 −15.9 (6)
C1—C2—C3—C4 −2.9 (11) O2—C14—C15—C16 103.4 (5)
C2—C3—C4—C5 2.0 (9) N2—C15—C16—C17 58.9 (7)
C2—C3—C4—C6 −177.6 (7) C14—C15—C16—C17 −54.2 (7)
C6—C4—C5—N1 179.7 (5) N2—C15—C16—C18 −175.5 (6)
C3—C4—C5—N1 0.1 (8) C14—C15—C16—C18 71.4 (8)
C6—C4—C5—C5i −1.3 (9) C2—C1—N1—C5 0.5 (8)
C3—C4—C5—C5i 179.1 (6) C2—C1—N1—Ru1 179.8 (5)
C5—C4—C6—C6i 0.8 (11) C4—C5—N1—C1 −1.3 (7)
C3—C4—C6—C6i −179.6 (7) C5i—C5—N1—C1 179.6 (5)
O1—C7—C8—C9 −176.8 (5) C4—C5—N1—Ru1 179.2 (4)
C12—C7—C8—C9 2.8 (8) C5i—C5—N1—Ru1 0.2 (6)
C7—C8—C9—C10 −1.0 (10) O2—C13—N2—C15 −5.2 (6)
C8—C9—C10—C11 −1.2 (10) C12—C13—N2—C15 173.8 (5)
C9—C10—C11—C12 1.6 (10) O2—C13—N2—Ru1 173.3 (3)
O1—C7—C12—C11 177.1 (5) C12—C13—N2—Ru1 −7.7 (7)
C8—C7—C12—C11 −2.4 (7) C16—C15—N2—C13 −108.2 (5)
O1—C7—C12—C13 1.0 (8) C14—C15—N2—C13 13.0 (6)
C8—C7—C12—C13 −178.5 (5) C16—C15—N2—Ru1 73.3 (6)
C10—C11—C12—C7 0.3 (8) C14—C15—N2—Ru1 −165.4 (4)
C10—C11—C12—C13 176.5 (5) C12—C7—O1—Ru1 8.7 (7)
C7—C12—C13—N2 −1.2 (8) C8—C7—O1—Ru1 −171.7 (3)
C11—C12—C13—N2 −177.3 (5) N2—C13—O2—C14 −5.9 (6)
C7—C12—C13—O2 177.9 (5) C12—C13—O2—C14 175.0 (5)
C11—C12—C13—O2 1.7 (7) C15—C14—O2—C13 13.9 (6)

Symmetry codes: (i) y, x, −z+1; (ii) −y+1, −x+1, −z+3/2.

Δ-Bis[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexafluoridophosphate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 0.95 2.59 3.102 (6) 114
C16—H16···O1i 1.00 2.53 3.224 (6) 126
C17—H17A···F3iii 0.98 2.52 3.464 (11) 162
C18—H18A···F2 0.98 2.48 3.357 (12) 149

Symmetry codes: (i) y, x, −z+1; (iii) x−1/2, −y+1/2, −z+7/4.

References

  1. Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Brunner, H., Nuber, B. & Prommesberger, M. (1998). Tetrahedron Asymmetry, 9, 3223–3229.
  3. Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). Dalton Trans.9, 1481–1492. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  5. Gong, L., Mulcahy, S. P., Devarajan, D., Harms, K., Frenking, G. & Meggers, E. (2010). Inorg. Chem.49, 7692–7699. [DOI] [PubMed]
  6. Gong, L., Mulcahy, S. P., Harms, K. & Meggers, E. (2009). J. Am. Chem. Soc.131, 9602–9603. [DOI] [PubMed]
  7. Gong, L., Wenzel, M. & Meggers, E. (2013). Acc. Chem. Res.46, 2635–2644. [DOI] [PubMed]
  8. Hayoz, P., von Zelewsky, A. & Stoeckli-Evans, H. (1993). J. Am. Chem. Soc.115, 5111–5114.
  9. Kelani, M. T., Muller, A. & Lammertsma, K. (2024). IUCrData, 9, x240720. [DOI] [PMC free article] [PubMed]
  10. Knof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed.38, 302–322. [DOI] [PubMed]
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624008939/wm4221sup1.cif

x-09-x240893-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624008939/wm4221Isup3.hkl

x-09-x240893-Isup3.hkl (360.1KB, hkl)

CCDC reference: 2383614

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES