Abstract
An exo-NADH oxidase system [NADH oxidase system (external)], effecting intact-mitochondrial oxidation of added NADH, was studied in pigeon heart mitochondria. Breast muscle mitochondria showed an equal specific activity of the system. The exo-NADH oxidase activity (200 micron mol of NADH/min per g of protein) equalled two-thirds of the State-3 respiratory activity with malate + pyruvate or one-seventh of the total NADH oxidase activity of heart mitochondria. The activity was not caused by use of proteinase in the preparation procedure and all measured parameters were very reproducible from preparation to preparation. The activity is therefore most likely not due to preparation artefacts. The exo-NADH oxidase system is present in all mitochondria in the preparation and is not confined to a subpopulation. The system reduced all cytochrome anaerobically and direct interaction with all cytochrome oxidase was demonstrated by interdependent cyanide inhibition. The exo-NADH oxidase system seems to be located at the outer surface of the mitochondrial inner membrane because, for instance, only this system was rapidly inhibited by rotenone, and ferricyanide could act as acceptor in the rotenone-inhibited system (reductase activity = 20 times oxidase activity). In the presence of antimycin, added NADH reduced only a part of the b-cytochromes. Freezing and thawing the mitochondria, one of the methods used for making them permeable to NADH, destroyed this functional compartmentation. The characteristics of the exo-NADH oxidase system and the malate-aspartate shuttle are compared and the evidence for the shuttle's function in heart in vivo is re-evaluated. It is proposed that oxidation of cytoplasmic NADH in red muscles primarily is effected by the exo-NADH oxidase system.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AVI-DOR Y., TRAUB A., MAGER J. Inhibition studies on sarcosomal DPNH oxidase. Biochim Biophys Acta. 1958 Oct;30(1):164–168. doi: 10.1016/0006-3002(58)90253-1. [DOI] [PubMed] [Google Scholar]
- Blanchaer M. C., Lundquist C. G., Griffith T. J. Factors influencing the utilization of reduced nicotinamide adenine dinucleotide by pigeon heart mitochondria. Can J Biochem. 1966 Jan;44(1):105–117. doi: 10.1139/o66-012. [DOI] [PubMed] [Google Scholar]
- Blanchaer M. C. The stimulation by phosphate and the inhibition by adenine nucleotides and nicotinamide-adenine dinucleotide of the respiratory chain. Can J Biochem. 1968 Apr;46(4):315–321. doi: 10.1139/o68-047. [DOI] [PubMed] [Google Scholar]
- DESHPANDE P. D., HICKMAN D. D., VON KORFF R. W. Morphology of isolated rabbit heart muscle mitochondria and the oxidation of extramitochondrial reduced diphosphopyridine nucleotide. J Biophys Biochem Cytol. 1961 Oct;11:77–93. doi: 10.1083/jcb.11.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooijewaard G., Slater E. C. Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase. Biochim Biophys Acta. 1976 Jul 9;440(1):1–15. doi: 10.1016/0005-2728(76)90109-2. [DOI] [PubMed] [Google Scholar]
- Douce R., Mannella C. A., Bonner W. D., Jr The external NADH dehydrogenases of intact plant mitochondria. Biochim Biophys Acta. 1973 Jan 18;292(1):105–116. doi: 10.1016/0005-2728(73)90255-7. [DOI] [PubMed] [Google Scholar]
- Griffith T. J., Blanchaer M. C. Kinetics of NADH oxidation by pigeon-heart mitochondria. Can J Biochem. 1967 Jun;45(6):881–888. doi: 10.1139/o67-098. [DOI] [PubMed] [Google Scholar]
- HEDMAN R., SURANYI E. M., LUFT R., ERNSTER L. Oxidation of external DPNH by mitochondria from human and rat skeletal muscle. Biochem Biophys Res Commun. 1962 Jul 19;8:314–320. doi: 10.1016/0006-291x(62)90285-1. [DOI] [PubMed] [Google Scholar]
- Jørgensen B. M., Rasmussen H. N., Rasmussen U. F. Ubiquinone reduction pattern in pigeon heart mitochondria. Identification of three distinct ubiquinone pools. Biochem J. 1985 Aug 1;229(3):621–629. doi: 10.1042/bj2290621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klingenberg M. The ferricyanide method for elucidating the sidedness of membrane-bound dehydrogenases. Methods Enzymol. 1979;56:229–233. doi: 10.1016/0076-6879(79)56025-x. [DOI] [PubMed] [Google Scholar]
- LEHNINGER A. L. Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J Biol Chem. 1951 May;190(1):345–359. [PubMed] [Google Scholar]
- Lee I. Y., Slater E. C. Studies on the accessibility barrier of NADH to cytochromes b in pigeon-heart mitochondria. Biochim Biophys Acta. 1972 Nov 17;283(2):223–233. doi: 10.1016/0005-2728(72)90238-1. [DOI] [PubMed] [Google Scholar]
- MINAKAMI S., RINGLER R. L., SINGER T. P. Studies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase. I. Assay of the enzyme in particulate and in soluble preparations. J Biol Chem. 1962 Feb;237:569–576. [PubMed] [Google Scholar]
- Ohnishi T., Kawaguchi K., Hagihara B. Preparation and some properties of yeast mitochondria. J Biol Chem. 1966 Apr 25;241(8):1797–1806. [PubMed] [Google Scholar]
- Ottaway J. H. Compartmentation: model and reality. Biochem Soc Trans. 1983 Jan;11(1):47–52. doi: 10.1042/bst0110047. [DOI] [PubMed] [Google Scholar]
- Ragan C. I. NADH-ubiquinone oxidoreductase. Biochim Biophys Acta. 1976 Nov 30;456(3-4):249–290. doi: 10.1016/0304-4173(76)90001-x. [DOI] [PubMed] [Google Scholar]
- Rasmussen H. N. Techniques for biochemical respiration measurements. Anal Biochem. 1979 Jun;95(2):416–428. doi: 10.1016/0003-2697(79)90749-8. [DOI] [PubMed] [Google Scholar]
- Rasmussen U. F., Rasmussen H. N., Jørgensen B. M. Three functionally different cytochrome b redox centres in pigeon heart mitochondria. Biochem J. 1982 Feb 1;201(2):311–320. doi: 10.1042/bj2010311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen U. F. The oxidation of added NADH by intact heart mitochondria. FEBS Lett. 1969 Jan;2(3):157–162. doi: 10.1016/0014-5793(69)80006-2. [DOI] [PubMed] [Google Scholar]
- Safer B., Smith C. M., Williamson J. R. Control of the transport of reducing equivalents across the mitochondrial membrane in perfused rat heart. J Mol Cell Cardiol. 1971 Jun;2(2):111–124. doi: 10.1016/0022-2828(71)90065-4. [DOI] [PubMed] [Google Scholar]
- Safer B., Williamson J. R. Mitochondrial-cytosolic interactions in perfused rat heart. Role of coupled transamination in repletion of citric acid cycle intermediates. J Biol Chem. 1973 Apr 10;248(7):2570–2579. [PubMed] [Google Scholar]
- Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
- Storey B. T. The Respiratory Chain of Plant Mitochondria: VIII. Reduction Kinetics of the Respiratory Chain Carriers of Mung Bean Mitochondria with Reduced Nicotinamide Adenine Dinucleotide. Plant Physiol. 1970 Oct;46(4):625–630. doi: 10.1104/pp.46.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss H., von Jagow G., Klingenberg M., Bücher T. Characterization of Neurospora crassa mitochondria prepared with a grind-mill. Eur J Biochem. 1970 May 1;14(1):75–82. doi: 10.1111/j.1432-1033.1970.tb00263.x. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Safer B., LaNoue K. F., Smith C. M., Walajtys E. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp Soc Exp Biol. 1973;27:241–281. [PubMed] [Google Scholar]
- Wrogemann K., Blanchaer M. C. Respiration and oxidative phosphorylation by muscle and heart mitochondria of hamsters with hereditary myocardiopathy and polymyopathy. Can J Biochem. 1968 Apr;46(4):323–329. doi: 10.1139/o68-048. [DOI] [PubMed] [Google Scholar]
- von Jagow G., Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur J Biochem. 1970 Feb;12(3):583–592. doi: 10.1111/j.1432-1033.1970.tb00890.x. [DOI] [PubMed] [Google Scholar]