Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jul 1;229(1):1–17. doi: 10.1042/bj2290001

Structure and function of ribosomal RNA.

R Brimacombe, W Stiege
PMCID: PMC1145144  PMID: 3899100

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Meguid S. S., Moore P. B., Steitz T. A. Crystallization of a ribonuclease-resistant fragment of Escherichia coli 5 S ribosomal RNA and its complex with protein L25. J Mol Biol. 1983 Dec 5;171(2):207–215. doi: 10.1016/s0022-2836(83)80353-2. [DOI] [PubMed] [Google Scholar]
  2. Allen G., Capasso R., Gualerzi C. Identification of the amino acid residues of proteins S5 and S8 adjacent to each other in the 30 S ribosomal subunit of Escherichia coli. J Biol Chem. 1979 Oct 10;254(19):9800–9806. [PubMed] [Google Scholar]
  3. Anderson S., de Bruijn M. H., Coulson A. R., Eperon I. C., Sanger F., Young I. G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. doi: 10.1016/0022-2836(82)90137-1. [DOI] [PubMed] [Google Scholar]
  4. Arad T., Leonard K., Wittmann H. G., Yonath A. Two-dimensional crystalline sheets of Bacillus stearothermophilus 50S ribosomal particles. EMBO J. 1984 Jan;3(1):127–131. doi: 10.1002/j.1460-2075.1984.tb01772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Atmadja J., Brimacombe R., Maden B. E. Xenopus laevis 18S ribosomal RNA: experimental determination of secondary structural elements, and locations of methyl groups in the secondary structure model. Nucleic Acids Res. 1984 Mar 26;12(6):2649–2667. doi: 10.1093/nar/12.6.2649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Azad A. A. Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits. Nucleic Acids Res. 1979 Dec 11;7(7):1913–1929. doi: 10.1093/nar/7.7.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bachellerie J. P., Thompson J. F., Wegnez M. R., Hearst J. E. Identification of the modified nucleotides produced by covalent photoaddition of hydroxymethyltrimethylpsoralen to RNA. Nucleic Acids Res. 1981 May 11;9(9):2207–2222. doi: 10.1093/nar/9.9.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barta A., Steiner G., Brosius J., Noller H. F., Kuechler E. Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3607–3611. doi: 10.1073/pnas.81.12.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Beauclerk A. A., Cundliffe E., Dijk J. The binding site for ribosomal protein complex L8 within 23 s ribosomal RNA of Escherichia coli. J Biol Chem. 1984 May 25;259(10):6559–6563. [PubMed] [Google Scholar]
  10. Bochkareva E. S., Girshovich A. S. Elongation factor G protects a nuclease-sensitive site of 23 S RNA within the ribosome. FEBS Lett. 1984 Jun 11;171(2):202–206. doi: 10.1016/0014-5793(84)80488-3. [DOI] [PubMed] [Google Scholar]
  11. Branlant C., Krol A., Machatt M. A., Pouyet J., Ebel J. P., Edwards K., Kössel H. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Res. 1981 Sep 11;9(17):4303–4324. doi: 10.1093/nar/9.17.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Breitenreuter G., Lotti M., Stöffler-Meilicke M., Stöffler G. Comparative electron microscopic study on the location of ribosomal proteins S3 and S7 on the surface of the E. coli 30S subunit using monoclonal and conventional antibody. Mol Gen Genet. 1984;197(2):189–195. doi: 10.1007/BF00330962. [DOI] [PubMed] [Google Scholar]
  13. Brewer L. A., Noller H. F. Ribonucleic acid-protein cross-linking within the intact Escherichia coli ribosome, utilizing ethylene glycol bis[3-(2-ketobutyraldehyde) ether], a reversible, bifunctional reagent: identification of 30S proteins. Biochemistry. 1983 Aug 30;22(18):4310–4315. doi: 10.1021/bi00287a023. [DOI] [PubMed] [Google Scholar]
  14. Brimacombe R., Maly P., Zwieb C. The structure of ribosomal RNA and its organization relative to ribosomal protein. Prog Nucleic Acid Res Mol Biol. 1983;28:1–48. doi: 10.1016/s0079-6603(08)60081-1. [DOI] [PubMed] [Google Scholar]
  15. Brosius J., Dull T. J., Noller H. F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):201–204. doi: 10.1073/pnas.77.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Brow D. A., Noller H. F. Protection of ribosomal RNA from kethoxal in polyribosomes. Implication of specific sites in ribosome function. J Mol Biol. 1983 Jan 5;163(1):27–46. doi: 10.1016/0022-2836(83)90028-1. [DOI] [PubMed] [Google Scholar]
  17. Burma D. P., Nag B., Tewari D. S. Association of 16S and 23S ribosomal RNAs to form a bimolecular complex. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4875–4878. doi: 10.1073/pnas.80.16.4875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Carbon P., Ebel J. P., Ehresmann C. The sequence of the ribosomal 16S RNA from Proteus vulgaris. Sequence comparison with E. coli 16S RNA and its use in secondary model building. Nucleic Acids Res. 1981 May 25;9(10):2325–2333. doi: 10.1093/nar/9.10.2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Carbon P., Ehresmann C., Ehresmann B., Ebel J. P. The complete nucleotide sequence of the ribosomal 16-S RNA from Excherichia coli. Experimental details and cistron heterogeneities. Eur J Biochem. 1979 Oct 15;100(2):399–410. doi: 10.1111/j.1432-1033.1979.tb04183.x. [DOI] [PubMed] [Google Scholar]
  20. Carbon P., Ehresmann C., Ehresmann B., Ebel J. P. The sequence of Escherichia coli ribosomal 16 S RNA determined by new rapid gel methods. FEBS Lett. 1978 Oct 1;94(1):152–156. doi: 10.1016/0014-5793(78)80926-0. [DOI] [PubMed] [Google Scholar]
  21. Cazillis M., Giocanti N., Houssais J. F., Ekert B. Ribosomal RNA-protein cross-links, induced by gamma-irradiation of 40S and 60S ribosomal subunits of L cells. Eur J Biochem. 1984 Mar 15;139(3):439–445. doi: 10.1111/j.1432-1033.1984.tb08024.x. [DOI] [PubMed] [Google Scholar]
  22. Chan Y. L., Gutell R., Noller H. F., Wool I. G. The nucleotide sequence of a rat 18 S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18 S ribosomal ribonucleic acid. J Biol Chem. 1984 Jan 10;259(1):224–230. [PubMed] [Google Scholar]
  23. Chan Y. L., Olvera J., Wool I. G. The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucleic Acids Res. 1983 Nov 25;11(22):7819–7831. doi: 10.1093/nar/11.22.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Chao S., Sederoff R., Levings C. S., 3rd Nucleotide sequence and evolution of the 18S ribosomal RNA gene in maize mitochondria. Nucleic Acids Res. 1984 Aug 24;12(16):6629–6644. doi: 10.1093/nar/12.16.6629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Chiam C. L., Wagner R. Composition of the Escherichia coli 70S ribosomal interface: a cross-linking study. Biochemistry. 1983 Mar 1;22(5):1193–1200. doi: 10.1021/bi00274a032. [DOI] [PubMed] [Google Scholar]
  26. Chiaruttini C., Expert-Bezançon A., Hayes D., Ehresmann B. Protein-RNA crosslinking in Escherichia coli 30S ribosomal subunits. Identification of a 16S rRNA fragment crosslinked to protein S12 by the use of the chemical crosslinking reagent 1-ethyl-3-dimethyl-aminopropylcarbodiimide. Nucleic Acids Res. 1982 Dec 11;10(23):7657–7676. doi: 10.1093/nar/10.23.7657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Chu Y. G., Wollenzien P. L., Cantor C. R. Use of psoralen monoadducts to compare the structure of 16S rRNA in active and inactive 30S ribosomal subunits. J Biomol Struct Dyn. 1983 Dec;1(3):647–656. doi: 10.1080/07391102.1983.10507472. [DOI] [PubMed] [Google Scholar]
  28. Clark C. G., Tague B. W., Ware V. C., Gerbi S. A. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Res. 1984 Aug 10;12(15):6197–6220. doi: 10.1093/nar/12.15.6197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Clark M. W., Lake J. A. Unusual rRNA-linked complex of 50S ribosomal subunits isolated from an Escherichia coli RNase III mutant. J Bacteriol. 1984 Mar;157(3):971–974. doi: 10.1128/jb.157.3.971-974.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Connaughton J. F., Rairkar A., Lockard R. E., Kumar A. Primary structure of rabbit 18S ribosomal RNA determined by direct RNA sequence analysis. Nucleic Acids Res. 1984 Jun 11;12(11):4731–4745. doi: 10.1093/nar/12.11.4731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
  32. Czernilofsky A. P., Kurland C. G., Stöffler G. 30S ribosomal proteins associated with the 3'-terminus of 16S RNA. FEBS Lett. 1975 Oct 15;58(1):281–284. doi: 10.1016/0014-5793(75)80279-1. [DOI] [PubMed] [Google Scholar]
  33. Dale R. M., Mendu N., Ginsburg H., Kridl J. C. Sequence analysis of the maize mitochondrial 26 S rRNA gene and flanking regions. Plasmid. 1984 Mar;11(2):141–150. doi: 10.1016/0147-619x(84)90019-2. [DOI] [PubMed] [Google Scholar]
  34. De Wachter R., Chen M. W., Vandenberghe A. Equilibria in 5-S ribosomal RNA secondary structure. Bulges and interior loops in 5-S RNA secondary structure may serve as articulations for a flexible molecule. Eur J Biochem. 1984 Aug 15;143(1):175–182. doi: 10.1111/j.1432-1033.1984.tb08356.x. [DOI] [PubMed] [Google Scholar]
  35. Douglas S. E., Doolittle W. F. Complete nucleotide sequence of the 23S rRNA gene of the Cyanobacterium, Anacystis nidulans. Nucleic Acids Res. 1984 Apr 11;12(7):3373–3386. doi: 10.1093/nar/12.7.3373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Douthwaite S., Christensen A., Garrett R. A. Higher order structure in the 3'-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote. J Mol Biol. 1983 Sep 5;169(1):249–279. doi: 10.1016/s0022-2836(83)80183-1. [DOI] [PubMed] [Google Scholar]
  37. Dron M., Rahire M., Rochaix J. D. Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii. Nucleic Acids Res. 1982 Dec 11;10(23):7609–7620. doi: 10.1093/nar/10.23.7609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Edwards K., Kössel H. The rRNA operon from Zea mays chloroplasts: nucleotide sequence of 23S rDNA and its homology with E.coli 23S rDNA. Nucleic Acids Res. 1981 Jun 25;9(12):2853–2869. doi: 10.1093/nar/9.12.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ehresmann C., Ofengand J. Two-dimensional gel electrophoresis technique for determination of the cross-linked nucleotides in cleavable covalent RNA-RNA complexes. Application to Escherichia coli and Bacillus subtilis acetylvalyl-tRNA covalently linked to E. coli 16S and yeast 18S ribosomal RNA. Biochemistry. 1984 Jan 31;23(3):438–445. doi: 10.1021/bi00298a007. [DOI] [PubMed] [Google Scholar]
  40. Eperon I. C., Anderson S., Nierlich D. P. Distinctive sequence of human mitochondrial ribosomal RNA genes. Nature. 1980 Jul 31;286(5772):460–467. doi: 10.1038/286460a0. [DOI] [PubMed] [Google Scholar]
  41. Eperon I. C., Janssen J. W., Hoeijmakers J. H., Borst P. The major transcripts of the kinetoplast DNA of Trypanosoma brucei are very small ribosomal RNAs. Nucleic Acids Res. 1983 Jan 11;11(1):105–125. doi: 10.1093/nar/11.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Erdmann V. A., Wolters J., Huysmans E., Vandenberghe A., De Wachter R. Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res. 1984;12 (Suppl):r133–r166. doi: 10.1093/nar/12.suppl.r133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Evstafieva A. G., Shatsky I. N., Bogdanov A. A., Semenkov Y. P., Vasiliev V. D. Localization of 5' and 3' ends of the ribosome-bound segment of template polynucleotides by immune electron microscopy. EMBO J. 1983;2(5):799–804. doi: 10.1002/j.1460-2075.1983.tb01503.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Expert-Bezançon A., Milet M., Carbon P. Precise localization of several covalent RNA-RNA cross-link in Escherichia coli 16S RNA. Eur J Biochem. 1983 Nov 2;136(2):267–274. doi: 10.1111/j.1432-1033.1983.tb07737.x. [DOI] [PubMed] [Google Scholar]
  45. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  46. Garrett R. A., Christensen A., Douthwaite S. Higher-order structure in the 3'-terminal domain VI of the 23 S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus. J Mol Biol. 1984 Nov 15;179(4):689–712. doi: 10.1016/0022-2836(84)90162-1. [DOI] [PubMed] [Google Scholar]
  47. Georgiev O. I., Dudov K. P., Hadjiolov A. A., Skryabin K. G. Evidence for interaction of 5.8S rRNA with the 5'- and 3'- terminal segments of Saccharomyces cerevisiae 25S rRNA. Folia Biol (Praha) 1984;30(1):1–14. [PubMed] [Google Scholar]
  48. Georgiev O. I., Nikolaev N., Hadjiolov A. A., Skryabin K. G., Zakharyev V. M., Bayev A. A. The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25 S rRNA gene from Saccharomyces cerevisae. Nucleic Acids Res. 1981 Dec 21;9(24):6953–6958. doi: 10.1093/nar/9.24.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Glotz C., Brimacombe R. An experimentally-derived model for the secondary structure of the 16S ribosomal RNA from Escherichia coli. Nucleic Acids Res. 1980 Jun 11;8(11):2377–2395. doi: 10.1093/nar/8.11.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Glotz C., Zwieb C., Brimacombe R., Edwards K., Kössel H. Secondary structure of the large subunit ribosomal RNA from Escherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucleic Acids Res. 1981 Jul 24;9(14):3287–3306. doi: 10.1093/nar/9.14.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Glover D. M. The rDNA of Drosophila melanogaster. Cell. 1981 Nov;26(3 Pt 1):297–298. doi: 10.1016/0092-8674(81)90197-5. [DOI] [PubMed] [Google Scholar]
  52. Gornicki P., Nurse K., Hellmann W., Boublik M., Ofengand J. High resolution localization of the tRNA anticodon interaction site on the Escherichia coli 30 S ribosomal subunit. J Biol Chem. 1984 Aug 25;259(16):10493–10498. [PubMed] [Google Scholar]
  53. Graf L., Roux E., Stutz E., Kössel H. Nucleotide sequence of a Euglena gracilis chloroplast gene coding for the 16S rRNA: homologies to E. coli and Zea mays chloroplast 16S rRNA. Nucleic Acids Res. 1982 Oct 25;10(20):6369–6381. doi: 10.1093/nar/10.20.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Gray M. W., Sankoff D., Cedergren R. J. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res. 1984 Jul 25;12(14):5837–5852. doi: 10.1093/nar/12.14.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Gregory R. J., Zeller M. L., Thurlow D. L., Gourse R. L., Stark M. J., Dahlberg A. E., Zimmermann R. A. Interaction of ribosomal proteins S6, S8, S15 and S18 with the central domain of 16 S ribosomal RNA from Escherichia coli. J Mol Biol. 1984 Sep 15;178(2):287–302. doi: 10.1016/0022-2836(84)90145-1. [DOI] [PubMed] [Google Scholar]
  56. Gupta R., Lanter J. M., Woese C. R. Sequence of the 16S Ribosomal RNA from Halobacterium volcanii, an Archaebacterium. Science. 1983 Aug 12;221(4611):656–659. doi: 10.1126/science.221.4611.656. [DOI] [PubMed] [Google Scholar]
  57. Göringer H. U., Szymkowiak C., Wagner R. Escherichia coli 5S RNA A and B conformers. Characterisation by enzymatic and chemical methods. Eur J Biochem. 1984 Oct 1;144(1):25–34. doi: 10.1111/j.1432-1033.1984.tb08426.x. [DOI] [PubMed] [Google Scholar]
  58. Göringer H. U., Wagner R., Jacob W. F., Dahlberg A. E., Zwieb C. Oligonucleotide directed mutagenesis of Escherichia coli 5S ribosomal RNA: construction of mutant and structural analysis. Nucleic Acids Res. 1984 Sep 25;12(18):6935–6950. doi: 10.1093/nar/12.18.6935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hadjiolov A. A., Georgiev O. I., Nosikov V. V., Yavachev L. P. Primary and secondary structure of rat 28 S ribosomal RNA. Nucleic Acids Res. 1984 Apr 25;12(8):3677–3693. doi: 10.1093/nar/12.8.3677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hancock J., Wagner R. A structural model of 5S RNA from E. coli based on intramolecular crosslinking evidence. Nucleic Acids Res. 1982 Feb 25;10(4):1257–1269. doi: 10.1093/nar/10.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hassouna N., Michot B., Bachellerie J. P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984 Apr 25;12(8):3563–3583. doi: 10.1093/nar/12.8.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Heus H. A., Van Kimmenade J. M., van Knippenberg P. H., Hinz H. J. Calorimetric measurements of the destabilisation of a ribosomal RNA hairpin by dimethylation of two adjacent adenosines. Nucleic Acids Res. 1983 Jan 11;11(1):203–210. doi: 10.1093/nar/11.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Heus H. A., van Kimmenade J. M., van Knippenberg P. H., Haasnoot C. A., de Bruin S. H., Hilbers C. W. High-resolution proton magnetic resonance studies of the 3'-terminal colicin fragment of 16 S ribosomal RNA from Escherichia coli. Assignment of iminoproton resonances by nuclear Overhauser effect experiments and the influence of adenine dimethylation on the hairpin conformation. J Mol Biol. 1983 Nov 15;170(4):939–956. doi: 10.1016/s0022-2836(83)80197-1. [DOI] [PubMed] [Google Scholar]
  64. Hogan J. J., Gutell R. R., Noller H. F. Probing the conformation of 18S rRNA in yeast 40S ribosomal subunits with kethoxal. Biochemistry. 1984 Jul 3;23(14):3322–3330. doi: 10.1021/bi00309a032. [DOI] [PubMed] [Google Scholar]
  65. Huber P. W., Wool I. G. Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):322–326. doi: 10.1073/pnas.81.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Iwami M., Muto A., Yamao F., Osawa S. Nucleotide sequence of the rrnB 16S ribosomal RNA gene from Mycoplasma capricolum. Mol Gen Genet. 1984;196(2):317–322. doi: 10.1007/BF00328065. [DOI] [PubMed] [Google Scholar]
  67. Kan L. S., Chandrasegaran S., Pulford S. M., Miller P. S. Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4263–4265. doi: 10.1073/pnas.80.14.4263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kelly J. M., Cox R. A. The nucleotide sequence at the 3'-end of Neurospora crassa 18S-rRNA and studies on the interaction with 5S-rRNA. Nucleic Acids Res. 1982 Nov 11;10(21):6733–6745. doi: 10.1093/nar/10.21.6733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kelly J. M., Cox R. A. The nucleotide sequence at the 3'-end of Neurospora crassa 25S-rRNA and the location of a 5.8S-rRNA binding site. Nucleic Acids Res. 1981 Mar 11;9(5):1111–1121. doi: 10.1093/nar/9.5.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kime M. J., Moore P. B. Escherichia coli ribosomal 5S RNA-protein L25 nucleoprotein complex: effects of RNA binding on the protein structure and the nature of the interaction. Biochemistry. 1984 Apr 10;23(8):1688–1695. doi: 10.1021/bi00303a017. [DOI] [PubMed] [Google Scholar]
  71. Klein B. K., Forman P., Shiomi Y., Schlessinger D. Electron microscopy of secondary structure in partially denatured Escherichia coli 16S rRNA and 30S subunits. Biochemistry. 1984 Aug 14;23(17):3927–3933. doi: 10.1021/bi00312a021. [DOI] [PubMed] [Google Scholar]
  72. Klein B. K., King T. C., Schlessinger D. Structure of partially denatured Escherichia coli 23 S ribosomal RNA determined by electron microscopy. J Mol Biol. 1983 Aug 25;168(4):809–830. doi: 10.1016/s0022-2836(83)80076-x. [DOI] [PubMed] [Google Scholar]
  73. Knauer V., Hegerl R., Hoppe W. Three-dimensional reconstruction and averaging of 30 S ribosomal subunits of Escherichia coli from electron micrographs. J Mol Biol. 1983 Jan 25;163(3):409–430. doi: 10.1016/0022-2836(83)90066-9. [DOI] [PubMed] [Google Scholar]
  74. Kobayashi M., Seki T., Yaginuma K., Koike K. Nucleotide sequences of small ribosomal RNA and adjacent transfer RNA genes in rat mitochondrial DNA. Gene. 1981 Dec;16(1-3):297–307. doi: 10.1016/0378-1119(81)90085-8. [DOI] [PubMed] [Google Scholar]
  75. Kop J., Kopylov A. M., Magrum L., Siegel R., Gupta R., Woese C. R., Noller H. F. Probing the structure of 16 S ribosomal RNA from Bacillus brevis. J Biol Chem. 1984 Dec 25;259(24):15287–15293. [PubMed] [Google Scholar]
  76. Kop J., Wheaton V., Gupta R., Woese C. R., Noller H. F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Bacillus stearothermophilus. DNA. 1984 Oct;3(5):347–357. doi: 10.1089/dna.1984.3.347. [DOI] [PubMed] [Google Scholar]
  77. Korn A. P., Spitnik-Elson P., Elson D., Ottensmeyer F. P. Specific visualization of ribosomal RNA in the intact ribosome by electron spectroscopic imaging. Eur J Cell Biol. 1983 Sep;31(2):334–340. [PubMed] [Google Scholar]
  78. Kumagai I., Bartsch M., Subramanian A. R., Erdmann V. A. Chemical accessibility of the 4.5S RNA in spinach chloroplast ribosomes. Nucleic Acids Res. 1983 Feb 25;11(4):961–970. doi: 10.1093/nar/11.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kumano M., Tomioka N., Sugiura M. The complete nucleotide sequence of a 23S rRNA gene from a blue-green alga, Anacystis nidulans. Gene. 1983 Oct;24(2-3):219–225. doi: 10.1016/0378-1119(83)90082-3. [DOI] [PubMed] [Google Scholar]
  80. Köchel H. G., Küntzel H. Mitochondrial L-rRNA from Aspergillus nidulans: potential secondary structure and evolution. Nucleic Acids Res. 1982 Aug 11;10(15):4795–4801. doi: 10.1093/nar/10.15.4795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Köchel H. G., Küntzel H. Nucleotide sequence of the Aspergillus nidulans mitochondrial gene coding for the small ribosomal subunit RNA: homology to E. coli 16S rRNA. Nucleic Acids Res. 1981 Nov 11;9(21):5689–5696. doi: 10.1093/nar/9.21.5689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Küntzel H., Köchel H. G. Evolution of rRNA and origin of mitochondria. Nature. 1981 Oct 29;293(5835):751–755. doi: 10.1038/293751a0. [DOI] [PubMed] [Google Scholar]
  83. Küntzel H., Piechulla B., Hahn U. Consensus structure and evolution of 5S rRNA. Nucleic Acids Res. 1983 Feb 11;11(3):893–900. doi: 10.1093/nar/11.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. doi: 10.1073/pnas.72.11.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Lake J. A. Ribosome evolution: the structural bases of protein synthesis in archaebacteria, eubacteria, and eukaryotes. Prog Nucleic Acid Res Mol Biol. 1983;30:163–194. doi: 10.1016/s0079-6603(08)60686-8. [DOI] [PubMed] [Google Scholar]
  86. Lambert J. M., Boileau G., Cover J. A., Traut R. R. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits. Biochemistry. 1983 Aug 2;22(16):3913–3920. doi: 10.1021/bi00285a029. [DOI] [PubMed] [Google Scholar]
  87. Leffers H., Garrett R. A. The nucleotide sequence of the 16S ribosomal RNA gene of the archaebacterium Halococcus morrhua. EMBO J. 1984 Jul;3(7):1613–1619. doi: 10.1002/j.1460-2075.1984.tb02019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Lin F. L., Kahan L., Ofengand J. Crosslinking of phenylalanyl-tRNA to the ribosomal A site via a photoaffinity probe attached to the 4-thiouridine residue is exclusively to ribosomal protein S19. J Mol Biol. 1984 Jan 5;172(1):77–86. doi: 10.1016/0022-2836(84)90415-7. [DOI] [PubMed] [Google Scholar]
  89. Liu W., Lo A. C., Nazar R. N. Structure of the ribosome-associated 5.8 S ribosomal RNA. J Mol Biol. 1983 Dec 5;171(2):217–224. doi: 10.1016/s0022-2836(83)80354-4. [DOI] [PubMed] [Google Scholar]
  90. Lo A. C., Liu W., Nazar R. N. Alternative conformational states in the ribosome-associated 5.8S RNA. Eur J Biochem. 1984 Jun 15;141(3):549–553. doi: 10.1111/j.1432-1033.1984.tb08228.x. [DOI] [PubMed] [Google Scholar]
  91. Maly P., Brimacombe R. Refined secondary structure models for the 16S and 23S ribosomal RNA of Escherichia coli. Nucleic Acids Res. 1983 Nov 11;11(21):7263–7286. doi: 10.1093/nar/11.21.7263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Maly P., Rinke J., Ulmer E., Zwieb C., Brimacombe R. Precise localization of the site of cross-linking between protein L4 and 23S ribonucleic acid induced by mild ultraviolet irradiation of Escherichia coli 50S ribosomal subunits. Biochemistry. 1980 Sep 2;19(18):4179–4188. doi: 10.1021/bi00559a007. [DOI] [PubMed] [Google Scholar]
  93. Mankin A. S., Kopylov A. M., Bogdanov A. A. Modification of 18 S rRNA in the 40 S ribosomal subunit of yeast with dimethyl sulfate. FEBS Lett. 1981 Nov 2;134(1):11–14. doi: 10.1016/0014-5793(81)80539-x. [DOI] [PubMed] [Google Scholar]
  94. McDougall J., Nazar R. N. Tertiary structure of the eukaryotic ribosomal 5 S RNA. Accessibility of phosphodiester bonds to ethylnitrosourea modification. J Biol Chem. 1983 Apr 25;258(8):5256–5259. [PubMed] [Google Scholar]
  95. Meier N., Wagner R. Binding of tRNA alters the chemical accessibility of nucleotides within the large ribosomal RNAs of E. coli ribosomes. Nucleic Acids Res. 1984 Feb 10;12(3):1473–1487. doi: 10.1093/nar/12.3.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Meier N., Wagner R. Effects of the ribosomal subunit association on the chemical modification of the 16S and 23S RNAs from Escherichia coli. Eur J Biochem. 1985 Jan 2;146(1):83–87. doi: 10.1111/j.1432-1033.1985.tb08622.x. [DOI] [PubMed] [Google Scholar]
  97. Messing J., Carlson J., Hagen G., Rubenstein I., Oleson A. Cloning and sequencing of the ribosomal RNA genes in maize: the 17S region. DNA. 1984;3(1):31–40. doi: 10.1089/dna.1.1984.3.31. [DOI] [PubMed] [Google Scholar]
  98. Michot B., Hassouna N., Bachellerie J. P. Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic Acids Res. 1984 May 25;12(10):4259–4279. doi: 10.1093/nar/12.10.4259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Miura K., Tsuda S., Iwano T., Ueda T., Harada F., Kato N. Chemical modification of cytosine residues of mouse 5 S ribosomal RNA with hydrogen sulfide. (Nucleosides and nucleotides 43). Biochim Biophys Acta. 1983 Mar 10;739(2):181–189. doi: 10.1016/0167-4781(83)90028-3. [DOI] [PubMed] [Google Scholar]
  100. Morikawa K., Kawakami M., Takemura S. Crystallization and preliminary X-ray diffraction study of 5 S rRNA from Thermus thermophilus HB8. FEBS Lett. 1982 Aug 23;145(2):194–196. doi: 10.1016/0014-5793(82)80166-x. [DOI] [PubMed] [Google Scholar]
  101. Nazar R. N. A 5.8 S rRNA-like sequence in prokaryotic 23 S rRNA. FEBS Lett. 1980 Oct 6;119(2):212–214. doi: 10.1016/0014-5793(80)80254-7. [DOI] [PubMed] [Google Scholar]
  102. Nazar R. N., Wildeman A. G. Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nucleic Acids Res. 1983 May 25;11(10):3155–3168. doi: 10.1093/nar/11.10.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Nelles L., Fang B. L., Volckaert G., Vandenberghe A., De Wachter R. Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs. Nucleic Acids Res. 1984 Dec 11;12(23):8749–8768. doi: 10.1093/nar/12.23.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Nierhaus K. H., Lietzke R., May R. P., Nowotny V., Schulze H., Simpson K., Wurmbach P., Stuhrmann H. B. Shape determinations of ribosomal proteins in situ. Proc Natl Acad Sci U S A. 1983 May;80(10):2889–2893. doi: 10.1073/pnas.80.10.2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Noller H. F., Kop J., Wheaton V., Brosius J., Gutell R. R., Kopylov A. M., Dohme F., Herr W., Stahl D. A., Gupta R. Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res. 1981 Nov 25;9(22):6167–6189. doi: 10.1093/nar/9.22.6167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  107. Noller H. F., Woese C. R. Secondary structure of 16S ribosomal RNA. Science. 1981 Apr 24;212(4493):403–411. doi: 10.1126/science.6163215. [DOI] [PubMed] [Google Scholar]
  108. Odom O. W., Dabbs E. R., Dionne C., Müller M., Hardesty B. The distance between S1, S21, and the 3' end of 16S RNA in 30S ribosomal subunits. The effect of poly(uridylic acid) and 50S subunits on these distances. Eur J Biochem. 1984 Jul 16;142(2):261–267. doi: 10.1111/j.1432-1033.1984.tb08280.x. [DOI] [PubMed] [Google Scholar]
  109. Odom O. W., Deng H. Y., Dabbs E. R., Hardesty B. Binding of S21 to the 50S subunit and the effect of the 50S subunit on nonradiative energy transfer between the 3' end of 16S RNA and S21. Biochemistry. 1984 Oct 9;23(21):5069–5076. doi: 10.1021/bi00316a037. [DOI] [PubMed] [Google Scholar]
  110. Odom O. W., Jr, Robbins D. J., Lynch J., Dottavio-Martin D., Kramer G., Hardesty B. Distances between 3' ends of ribosomal ribonucleic acids reassembled into Escherichia coli ribosomes. Biochemistry. 1980 Dec 23;19(26):5947–5954. doi: 10.1021/bi00567a001. [DOI] [PubMed] [Google Scholar]
  111. Oettl H., Hegerl R., Hoppe W. Three-dimensional reconstruction and averaging of 50 S ribosomal subunits of Escherichia coli from electron micrographs. J Mol Biol. 1983 Jan 25;163(3):431–450. doi: 10.1016/0022-2836(83)90067-0. [DOI] [PubMed] [Google Scholar]
  112. Ofengand J., Gornicki P., Chakraburtty K., Nurse K. Functional conservation near the 3' end of eukaryotic small subunit RNA: photochemical crosslinking of P site-bound acetylvalyl-tRNA to 18S RNA of yeast ribosomes. Proc Natl Acad Sci U S A. 1982 May;79(9):2817–2821. doi: 10.1073/pnas.79.9.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Olsen G. J., McCarroll R., Sogin M. L. Secondary structure of the Dictyostelium discoideum small subunit ribosomal RNA. Nucleic Acids Res. 1983 Nov 25;11(22):8037–8049. doi: 10.1093/nar/11.22.8037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Otsuka T., Nomiyama H., Yoshida H., Kukita T., Kuhara S., Sakaki Y. Complete nucleotide sequence of the 26S rRNA gene of Physarum polycephalum: its significance in gene evolution. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3163–3167. doi: 10.1073/pnas.80.11.3163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Pavlakis G. N., Jordan B. R., Wurst R. M., Vournakis J. N. Sequence and secondary structure of Drosophila melanogaster 5.8S and 2S rRNAs and of the processing site between them. Nucleic Acids Res. 1979 Dec 20;7(8):2213–2238. doi: 10.1093/nar/7.8.2213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Pieler T., Erdmann V. A. Three-dimensional structural model of eubacterial 5S RNA that has functional implications. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4599–4603. doi: 10.1073/pnas.79.15.4599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Pieler T., Schreiber A., Erdmann V. A. Comparative structural analysis of eubacterial 5S rRNA by oxidation of adenines in the N-1 position. Nucleic Acids Res. 1984 Apr 11;12(7):3115–3126. doi: 10.1093/nar/12.7.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Prince J. B., Taylor B. H., Thurlow D. L., Ofengand J., Zimmermann R. A. Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5450–5454. doi: 10.1073/pnas.79.18.5450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Qu H. L., Michot B., Bachellerie J. P. Improved methods for structure probing in large RNAs: a rapid 'heterologous' sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5' terminal domain of eukaryotic 28S rRNA. Nucleic Acids Res. 1983 Sep 10;11(17):5903–5920. doi: 10.1093/nar/11.17.5903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Rabin D., Kao T., Crothers D. M. A characterization of the low temperature structural transition of Escherichia coli 5 S RNA by partial enzymatic digestion. J Biol Chem. 1983 Sep 25;258(18):10813–10816. [PubMed] [Google Scholar]
  122. Ramakrishnan V., Capel M., Kjeldgaard M., Engelman D. M., Moore P. B. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol. 1984 Apr 5;174(2):265–284. doi: 10.1016/0022-2836(84)90338-3. [DOI] [PubMed] [Google Scholar]
  123. Raynal F., Michot B., Bachellerie J. P. Complete nucleotide sequence of mouse 18 S rRNA gene: comparison with other available homologs. FEBS Lett. 1984 Feb 27;167(2):263–268. doi: 10.1016/0014-5793(84)80139-8. [DOI] [PubMed] [Google Scholar]
  124. Rubtsov P. M., Musakhanov M. M., Zakharyev V. M., Krayev A. S., Skryabin K. G., Bayev A. A. The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res. 1980 Dec 11;8(23):5779–5794. doi: 10.1093/nar/8.23.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Saccone C., Cantatore P., Gadaleta G., Gallerani R., Lanave C., Pepe G., Kroon A. M. The nucleotide sequence of the large ribosomal RNA gene and the adjacent tRNA genes from rat mitochondria. Nucleic Acids Res. 1981 Aug 25;9(16):4139–4148. doi: 10.1093/nar/9.16.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Salim M., Maden B. E. Nucleotide sequence of Xenopus laevis 18S ribosomal RNA inferred from gene sequence. Nature. 1981 May 21;291(5812):205–208. doi: 10.1038/291205a0. [DOI] [PubMed] [Google Scholar]
  127. Schmidt F. J., Thompson J., Lee K., Dijk J., Cundliffe E. The binding site for ribosomal protein L11 within 23 S ribosomal RNA of Escherichia coli. J Biol Chem. 1981 Dec 10;256(23):12301–12305. [PubMed] [Google Scholar]
  128. Schnare M. N., Spencer D. F., Gray M. W. Primary structures of four novel small ribosomal RNAs from Crithidia fasciculata. Can J Biochem Cell Biol. 1983 Jan;61(1):38–45. doi: 10.1139/o83-006. [DOI] [PubMed] [Google Scholar]
  129. Seilhamer J. J., Cummings D. J. Structure and sequence of the mitochondrial 20S rRNA and tRNA tyr gene of Paramecium primaurelia. Nucleic Acids Res. 1981 Dec 11;9(23):6391–6406. doi: 10.1093/nar/9.23.6391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Seilhamer J. J., Gutell R. R., Cummings D. J. Paramecium mitochondrial genes. II. Large subunit rRNA gene sequence and microevolution. J Biol Chem. 1984 Apr 25;259(8):5173–5181. [PubMed] [Google Scholar]
  131. Seilhamer J. J., Olsen G. J., Cummings D. J. Paramecium mitochondrial genes. I. Small subunit rRNA gene sequence and microevolution. J Biol Chem. 1984 Apr 25;259(8):5167–5172. [PubMed] [Google Scholar]
  132. Serdyuk I. N., Agalarov S. C., Sedelnikova S. E., Spirin A. S., May R. P. Shape and compactness of the isolated ribosomal 16 S RNA and its complexes with ribosomal proteins. J Mol Biol. 1983 Sep 15;169(2):409–425. doi: 10.1016/s0022-2836(83)80058-8. [DOI] [PubMed] [Google Scholar]
  133. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Sigmund C. D., Ettayebi M., Morgan E. A. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 1984 Jun 11;12(11):4653–4663. doi: 10.1093/nar/12.11.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Silberklang M., RajBhandary U. L., Lück A., Erdmann V. A. Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit. Nucleic Acids Res. 1983 Feb 11;11(3):605–617. doi: 10.1093/nar/11.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Sköld S. E. Chemical crosslinking of elongation factor G to the 23S RNA in 70S ribosomes from Escherichia coli. Nucleic Acids Res. 1983 Jul 25;11(14):4923–4932. doi: 10.1093/nar/11.14.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Sor F., Fukuhara H. Complete DNA sequence coding for the large ribosomal RNA of yeast mitochondria. Nucleic Acids Res. 1983 Jan 25;11(2):339–348. doi: 10.1093/nar/11.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Sor F., Fukuhara H. Séquence nucléotidique du gène de l'ARN ribosomique 15S mitochondrial de la levure. C R Seances Acad Sci D. 1980 Dec 8;291(12):933–936. [PubMed] [Google Scholar]
  139. Spencer D. F., Schnare M. N., Gray M. W. Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria and Escherichia coli. Proc Natl Acad Sci U S A. 1984 Jan;81(2):493–497. doi: 10.1073/pnas.81.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Spirin A. S. Location of tRNA on the ribosome. FEBS Lett. 1983 Jun 13;156(2):217–221. doi: 10.1016/0014-5793(83)80499-2. [DOI] [PubMed] [Google Scholar]
  141. Stahl D. A., Luehrsen K. R., Woese C. R., Pace N. R. An unusual 5S rRNA, from Sulfolobus acidocaldarius, and its implications for a general 5S rRNA structure. Nucleic Acids Res. 1981 Nov 25;9(22):6129–6137. doi: 10.1093/nar/9.22.6129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Stark M. J., Gregory R. J., Gourse R. L., Thurlow D. L., Zwieb C., Zimmermann R. A., Dahlberg A. E. Effects of site-directed mutations in the central domain of 16 S ribosomal RNA upon ribosomal protein binding, RNA processing and 30 S subunit assembly. J Mol Biol. 1984 Sep 15;178(2):303–322. doi: 10.1016/0022-2836(84)90146-3. [DOI] [PubMed] [Google Scholar]
  143. Steinhäuser K. G., Woolley P., Dijk J., Epe B. Distance measurement by energy transfer. Ribosomal proteins L6, L10 and L11 of Escherichia coli. Eur J Biochem. 1983 Dec 1;137(1-2):337–345. doi: 10.1111/j.1432-1033.1983.tb07834.x. [DOI] [PubMed] [Google Scholar]
  144. Steitz J. A., Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. doi: 10.1073/pnas.72.12.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Stiege W., Glotz C., Brimacombe R. Localisation of a series of intra-RNA cross-links in the secondary and tertiary structure of 23S RNA, induced by ultraviolet irradiation of Escherichia coli 50S ribosomal subunits. Nucleic Acids Res. 1983 Mar 25;11(6):1687–1706. doi: 10.1093/nar/11.6.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Stiege W., Zwieb C., Brimacombe R. Precise localisation of three intra-RNA cross-links in 23S RNA and one in 5S RNA, induced by treatment of Escherichia coli 50S ribosomal subunits with bis-(2-chloroethyl)-methylamine. Nucleic Acids Res. 1982 Nov 25;10(22):7211–7229. doi: 10.1093/nar/10.22.7211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Stiegler P., Carbon P., Ebel J. P., Ehresmann C. A general secondary-structure model for procaryotic and eucaryotic RNAs from the small ribosomal subunits. Eur J Biochem. 1981 Dec;120(3):487–495. doi: 10.1111/j.1432-1033.1981.tb05727.x. [DOI] [PubMed] [Google Scholar]
  148. Stiegler P., Carbon P., Zuker M., Ebel J. P., Ehresmann C. Structural organization of the 16S ribosomal RNA from E. coli. Topography and secondary structure. Nucleic Acids Res. 1981 May 11;9(9):2153–2172. doi: 10.1093/nar/9.9.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Studnicka G. M., Eiserling F. A., Lake J. A. A unique secondary folding pattern for 5S RNA corresponds to the lowest energy homologous secondary structure in 17 different prokaryotes. Nucleic Acids Res. 1981 Apr 24;9(8):1885–1904. doi: 10.1093/nar/9.8.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Stöffler-Meilicke M., Noah M., Stöffler G. Location of eight ribosomal proteins on the surface of the 50S subunit from Escherichia coli. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6780–6784. doi: 10.1073/pnas.80.22.6780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Subramanian A. R. Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol. 1983;28:101–142. doi: 10.1016/s0079-6603(08)60085-9. [DOI] [PubMed] [Google Scholar]
  152. Takaiwa F., Oono K., Sugiura M. The complete nucleotide sequence of a rice 17S rRNA gene. Nucleic Acids Res. 1984 Jul 11;12(13):5441–5448. doi: 10.1093/nar/12.13.5441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Takaiwa F., Sugiura M. The complete nucleotide sequence of a 23-S rRNA gene from tobacco chloroplasts. Eur J Biochem. 1982 May;124(1):13–19. doi: 10.1111/j.1432-1033.1982.tb05901.x. [DOI] [PubMed] [Google Scholar]
  154. Thammana P., Cantor C. R., Wollenzien P. L., Hearst J. E. Crosslinking studies on the organization of the 16 S ribosomal RNA within the 30 S Escherichia coli ribosomal subunit. J Mol Biol. 1979 Nov 25;135(1):271–283. doi: 10.1016/0022-2836(79)90352-8. [DOI] [PubMed] [Google Scholar]
  155. Thompson J. F., Hearst J. E. Structure of E. coli 16S RNA elucidated by psoralen crosslinking. Cell. 1983 Apr;32(4):1355–1365. doi: 10.1016/0092-8674(83)90316-1. [DOI] [PubMed] [Google Scholar]
  156. Thompson J. F., Hearst J. E. Structure-function relations in E. coli 16S RNA. Cell. 1983 May;33(1):19–24. doi: 10.1016/0092-8674(83)90330-6. [DOI] [PubMed] [Google Scholar]
  157. Thurlow D. L., Ehresmann C., Ehresmann B. Nucleotides in 16S rRNA that are required in unmodified form for features recognized by ribosomal protein S8. Nucleic Acids Res. 1983 Oct 11;11(19):6787–6802. doi: 10.1093/nar/11.19.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Tohdoh N., Sugiura M. The complete nucleotide sequence of 16S ribosomal RNA gene from tobacco chloroplasts. Gene. 1982 Feb;17(2):213–218. doi: 10.1016/0378-1119(82)90074-9. [DOI] [PubMed] [Google Scholar]
  159. Tomioka N., Sugiura M. The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Mol Gen Genet. 1983;191(1):46–50. doi: 10.1007/BF00330888. [DOI] [PubMed] [Google Scholar]
  160. Torczynski R., Bollon A. P., Fuke M. The complete nucleotide sequence of the rat 18S ribosomal RNA gene and comparison with the respective yeast and frog genes. Nucleic Acids Res. 1983 Jul 25;11(14):4879–4890. doi: 10.1093/nar/11.14.4879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Trempe M. R., Ohgi K., Glitz D. G. Ribosome structure. Localization of 7-methylguanosine in the small subunits of Escherichia coli and chloroplast ribosomes by immunoelectron microscopy. J Biol Chem. 1982 Aug 25;257(16):9822–9829. [PubMed] [Google Scholar]
  162. Trifonov E. N., Bolshoi G. Open and closed 5 S ribosomal RNA, the only two universal structures encoded in the nucleotide sequences. J Mol Biol. 1983 Sep 5;169(1):1–13. doi: 10.1016/s0022-2836(83)80172-7. [DOI] [PubMed] [Google Scholar]
  163. Turner S., Noller H. F. Identification of sites of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen cross-linking in Escherichia coli 23S ribosomal ribonucleic acid. Biochemistry. 1983 Aug 16;22(17):4159–4164. doi: 10.1021/bi00286a026. [DOI] [PubMed] [Google Scholar]
  164. Turner S., Thompson J. F., Hearst J. E., Noller H. F. Identification of a site of psoralen crosslinking in E. coli 16S ribosomal RNA. Nucleic Acids Res. 1982 May 11;10(9):2839–2849. doi: 10.1093/nar/10.9.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Van Duin J., Ravensbergen C. J., Doornbos J. Basepairing of oligonucleotides to the 3' end of 16S ribosomal RNA is not stabilized by ribosomal proteins. Nucleic Acids Res. 1984 Jun 25;12(12):5079–5086. doi: 10.1093/nar/12.12.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Van Etten R. A., Walberg M. W., Clayton D. A. Precise localization and nucleotide sequence of the two mouse mitochondrial rRNA genes and three immediately adjacent novel tRNA genes. Cell. 1980 Nov;22(1 Pt 1):157–170. doi: 10.1016/0092-8674(80)90164-6. [DOI] [PubMed] [Google Scholar]
  167. Van Knippenberg P. H., Van Kimmenade J. M., Heus H. A. Phylogeny of the conserved 3' terminal structure of the RNA of small ribosomal subunits. Nucleic Acids Res. 1984 Mar 26;12(6):2595–2604. doi: 10.1093/nar/12.6.2595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Vasiliev V. D., Selivanova O. M., Ryazantsev S. N. Structure of the Escherichia coli 50 S ribosomal subunit. J Mol Biol. 1983 Dec 25;171(4):561–569. doi: 10.1016/0022-2836(83)90043-8. [DOI] [PubMed] [Google Scholar]
  169. Vaughn J. C., Sperbeck S. J., Ramsey W. J., Lawrence C. B. A universal model for the secondary structure of 5.8S ribosomal RNA molecules, their contact sites with 28S ribosomal RNAs, and their prokaryotic equivalent. Nucleic Acids Res. 1984 Oct 11;12(19):7479–7502. doi: 10.1093/nar/12.19.7479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Veldman G. M., Klootwijk J., de Regt V. C., Planta R. J., Branlant C., Krol A., Ebel J. P. The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res. 1981 Dec 21;9(24):6935–6952. doi: 10.1093/nar/9.24.6935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Verschoor A., Frank J., Radermacher M., Wagenknecht T., Boublik M. Three-dimensional reconstruction of the 30 S ribosomal subunit from randomly oriented particles. J Mol Biol. 1984 Sep 25;178(3):677–698. doi: 10.1016/0022-2836(84)90245-6. [DOI] [PubMed] [Google Scholar]
  172. Vester B., Garrett R. A. Structure of a protein L23-RNA complex located at the A-site domain of the ribosomal peptidyl transferase centre. J Mol Biol. 1984 Nov 5;179(3):431–452. doi: 10.1016/0022-2836(84)90074-3. [DOI] [PubMed] [Google Scholar]
  173. Wagner R., Garrett R. A. A new RNA-RNA crosslinking reagent and its application to ribosomal 5S RNA. Nucleic Acids Res. 1978 Nov;5(11):4065–4075. doi: 10.1093/nar/5.11.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Wagner R., Gassen H. G. Identification of a 16S rna sequence located in the decoding site of 30S ribosomes. FEBS Lett. 1976 Sep 1;67(3):312–315. doi: 10.1016/0014-5793(76)80554-6. [DOI] [PubMed] [Google Scholar]
  175. Walker T. A., Endo Y., Wheat W. H., Wool I. G., Pace N. R. Location of 5.8 S rRNA contact sites in 28 S rRNA and the effect of alpha-sarcin on the association of 5.8 S rRNA with 28 S rRNA. J Biol Chem. 1983 Jan 10;258(1):333–338. [PubMed] [Google Scholar]
  176. Ware V. C., Tague B. W., Clark C. G., Gourse R. L., Brand R. C., Gerbi S. A. Sequence analysis of 28S ribosomal DNA from the amphibian Xenopus laevis. Nucleic Acids Res. 1983 Nov 25;11(22):7795–7817. doi: 10.1093/nar/11.22.7795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Wickstrom E. Nuclease mapping of the secondary structure of the 49-nucleotide 3' terminal cloacin fragment of Escherichia coli 16s RNA and its interactions with initiation factor 3. Nucleic Acids Res. 1983 Apr 11;11(7):2035–2052. doi: 10.1093/nar/11.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Winkelmann D. A., Kahan L. Immunochemical accessibility of ribosomal protein S4 in the 30 S ribosome. The interaction of S4 with S5 and S12. J Mol Biol. 1983 Apr 5;165(2):357–374. doi: 10.1016/s0022-2836(83)80261-7. [DOI] [PubMed] [Google Scholar]
  179. Wittmann H. G. Architecture of prokaryotic ribosomes. Annu Rev Biochem. 1983;52:35–65. doi: 10.1146/annurev.bi.52.070183.000343. [DOI] [PubMed] [Google Scholar]
  180. Wittmann H. G. Components of bacterial ribosomes. Annu Rev Biochem. 1982;51:155–183. doi: 10.1146/annurev.bi.51.070182.001103. [DOI] [PubMed] [Google Scholar]
  181. Woese C. R., Gutell R., Gupta R., Noller H. F. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. 1983 Dec;47(4):621–669. doi: 10.1128/mr.47.4.621-669.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Wollenzien P., Hearst J. E., Thammana P., Cantor C. R. Base-pairing between distant regions of the Escherichia coli 16 S ribosomal RNA in solution. J Mol Biol. 1979 Nov 25;135(1):255–269. doi: 10.1016/0022-2836(79)90351-6. [DOI] [PubMed] [Google Scholar]
  183. Wower I., Brimacombe R. The localization of multiple sites on 16S RNA which are cross-linked to proteins S7 and S8 in Escherichia coli 30S ribosomal subunits by treatment with 2-iminothiolane. Nucleic Acids Res. 1983 Mar 11;11(5):1419–1437. doi: 10.1093/nar/11.5.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Wower I., Wower J., Meinke M., Brimacombe R. The use of 2-iminothiolane as an RNA-protein cross-linking agent in Escherichia coli ribosomes, and the localisation on 23S RNA of sites cross-linked to proteins L4, L6, L21, L23, L27 and L29. Nucleic Acids Res. 1981 Sep 11;9(17):4285–4302. doi: 10.1093/nar/9.17.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Yonath A., Bartunik H. D., Bartels K. S., Wittmann H. G. Some x-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. J Mol Biol. 1984 Jul 25;177(1):201–206. doi: 10.1016/0022-2836(84)90066-4. [DOI] [PubMed] [Google Scholar]
  186. Zagorska L., Van Duin J., Noller H. F., Pace B., Johnson K. D., Pace N. R. The conserved 5 S rRNA complement to tRNA is not required for translation of natural mRNA. J Biol Chem. 1984 Mar 10;259(5):2798–2802. [PubMed] [Google Scholar]
  187. Zagórska L., Szkopińska A., Klita S., Szafrański P. Effect of removal of 160 nucleotides from the 3' end of Escherichia coli 16s rRNA on the reconstitution and activity of 30S ribosomes. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1152–1159. doi: 10.1016/0006-291x(80)91593-4. [DOI] [PubMed] [Google Scholar]
  188. Zweib C., Dahlberg A. E. Structural and functional analysis of Escherichia coli ribosomes containing small deletions around position 1760 in the 23S ribosomal RNA. Nucleic Acids Res. 1984 Sep 25;12(18):7135–7152. doi: 10.1093/nar/12.18.7135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Zwieb C., Brimacombe R. Localisation of a series of intra-RNA cross-links in 16S RNA, induced by ultraviolet irradiation of Escherichia coli 30S ribosomal subunits. Nucleic Acids Res. 1980 Jun 11;8(11):2397–2411. doi: 10.1093/nar/8.11.2397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Zwieb C., Brimacombe R. Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, GFR. Nucleic Acids Res. 1979;6(5):1775–1790. doi: 10.1093/nar/6.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Zwieb C., Dahlberg A. E. Point mutations in the middle of 16S ribosomal RNA of E. coli produced by deletion loop mutagenesis. Nucleic Acids Res. 1984 May 25;12(10):4361–4375. doi: 10.1093/nar/12.10.4361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Zwieb C., Glotz C., Brimacombe R. Secondary structure comparisons between small subunit ribosomal RNA molecules from six different species. Nucleic Acids Res. 1981 Aug 11;9(15):3621–3640. doi: 10.1093/nar/9.15.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Zwieb C., Ross A., Rinke J., Meinke M., Brimacombe R. Evidence for RNA-RNA cross-link formation in Escherichia coli ribosomes. Nucleic Acids Res. 1978 Aug;5(8):2705–2720. doi: 10.1093/nar/5.8.2705. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES