Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jul 1;229(1):47–55. doi: 10.1042/bj2290047

Hazelhurst-vesicular-stomatitis-virus G and Sindbis-virus E1 glycoproteins undergo similar host-cell-dependent variation in oligosaccharide processing.

S K Davidson, L A Hunt
PMCID: PMC1145148  PMID: 2994631

Abstract

We have examined and compared the host-cell-dependent glycosylation of the G glycoprotein of vesicular-stomatitis virus (Hazelhurst strain) and the E1 and E2 glycoproteins of Sindbis virus replicated by baby-hamster kidney, chicken-embryo fibroblast and mouse L929 monolayer cell cultures. The results of endo-beta-N-acetylglucosaminidase H digestion of viral proteins labelled with [3H]mannose or leucine and Pronase-digested glycopeptides labelled with [3H]mannose indicated that both the G protein and the E1 protein contained a similar mixture of endoglycosidase-resistant oligosaccharides of the complex acidic type and less extensively processed endoglycosidase-sensitive oligosaccharides of the neutral or hybrid type, with a relatively greater content of the endoglycosidase-sensitive oligosaccharides for virus replicated in the chicken as against hamster or mouse cells. A large fraction of the G protein and the majority of the E1 proteins from the mammalian host cells contained acidic-type oligosaccharides at both glycosylation sites, whereas most of the G and E1 glycoproteins from the avian host cells and essentially all of the E2 protein from all three host-cell types contained an acidic-type oligosaccharide at one site and neutral- or hybrid-type oligosaccharide at the other site. The relative increase in neutral- and hybrid-type oligosaccharides with five-mannose core structures observed for the G and E1 proteins of virus released from the avian host cells suggested that two specific steps in oligosaccharide processing (mediated by alpha-mannoside II and N-acetylglucosaminyltransferase I) were less efficient at one of the glycosylation sites of the vesicular-stomatitis-virus G protein and Sindbis-virus E1 protein in the avian as against mammalian host cells.

Full text

PDF
47

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burge B. W., Huang A. S. Comparison of membrane protein glycopeptides of Sindbis virus and vesicular stomatitis virus. J Virol. 1970 Aug;6(2):176–182. doi: 10.1128/jvi.6.2.176-182.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke D. J., Keegstra K. Purification and composition of the proteins from Sindbis virus grown in chick and BHK cells. J Virol. 1976 Dec;20(3):676–686. doi: 10.1128/jvi.20.3.676-686.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burke D., Keegstra K. Carbohydrate structure of Sindbis virus glycoprotein E2 from virus grown in hamster and chicken cells. J Virol. 1979 Feb;29(2):546–554. doi: 10.1128/jvi.29.2.546-554.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davidson S. K., Hunt L. A. Unusual neutral oligosaccharides in mature Sindbis virus glycoproteins are synthesized from truncated precursor oligosaccharides in Chinese hamster ovary cells. J Gen Virol. 1983 Mar;64(Pt 3):613–625. doi: 10.1099/0022-1317-64-3-613. [DOI] [PubMed] [Google Scholar]
  5. Etchison J. R., Holland J. J. Carbohydrate composition of the membrane glycoprotein of vesicular stomatitis virus grown in four mammalian cell lines. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4011–4014. doi: 10.1073/pnas.71.10.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Etchison J. R., Robertson J. S., Summers D. F. Partial structural analysis of the oligosaccharide moieties of the vesicular stomatitis virus glycoprotein by sequential chemical and enzymatic degradation. Virology. 1977 May 15;78(2):375–392. doi: 10.1016/0042-6822(77)90115-5. [DOI] [PubMed] [Google Scholar]
  7. Etchison J. R., Summers D. F., Georgopoulos C. Variations in the structure of radiolabeled glycopeptides from the glycoprotein of vesicular stomatitis virus grown in four mouse teratocarcinoma cell lines. J Biol Chem. 1981 Apr 10;256(7):3366–3369. [PubMed] [Google Scholar]
  8. Gallione C. J., Rose J. K. Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J Virol. 1983 Apr;46(1):162–169. doi: 10.1128/jvi.46.1.162-169.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harpaz N., Schachter H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi alpha-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. J Biol Chem. 1980 May 25;255(10):4894–4902. [PubMed] [Google Scholar]
  10. Hsieh P., Rosner M. R., Robbins P. W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2548–2554. [PubMed] [Google Scholar]
  11. Hsieh P., Rosner M. R., Robbins P. W. Selective cleavage by endo-beta-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2555–2561. [PubMed] [Google Scholar]
  12. Hunt L. A., Davidson S. K., Golemboski D. B. Unusual heterogeneity in the glycosylation of the G protein of the hazelhurst strain of vesicular stomatitis virus. Arch Biochem Biophys. 1983 Oct 1;226(1):347–356. doi: 10.1016/0003-9861(83)90301-6. [DOI] [PubMed] [Google Scholar]
  13. Hunt L. A., Etchison J. R., Summers D. F. Oligosaccharide chains are trimmed during synthesis of the envelope glycoprotein of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1978 Feb;75(2):754–758. doi: 10.1073/pnas.75.2.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hunt L. A., Lamph W., Wright S. E. Transformation-dependent alterations in the oligosaccharides of Prague C Rous sarcoma virus glycoproteins. J Virol. 1981 Jan;37(1):207–215. doi: 10.1128/jvi.37.1.207-215.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunt L. A. Lectin affinity chromatography of Sindbis and Rous sarcoma virus glycopeptides and oligosaccharides. J Virol Methods. 1982 May;4(4-5):283–295. doi: 10.1016/0166-0934(82)90075-1. [DOI] [PubMed] [Google Scholar]
  16. Hunt L. A. Sindbis virus glycoproteins acquire unusual neutral oligosaccharides in both normal and lectin-resistant Chinese Hamster ovary cell lines. Virology. 1981 Sep;113(2):534–543. doi: 10.1016/0042-6822(81)90181-1. [DOI] [PubMed] [Google Scholar]
  17. Hunt L. A., Summers D. F. Glycosylation of vesicular stomatitis virus glycoprotein in virus-infected HeLa cells. J Virol. 1976 Dec;20(3):646–657. doi: 10.1128/jvi.20.3.646-657.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hunt L. A., Wright S. E. Rous sarcoma virus glycoproteins contain hybrid-type oligosaccharides. J Virol. 1981 Aug;39(2):646–650. doi: 10.1128/jvi.39.2.646-650.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kang M. S., Elbein A. D. Alterations in the structure of the oligosaccharide of vesicular stomatitis virus G protein by swainsonine. J Virol. 1983 Apr;46(1):60–69. doi: 10.1128/jvi.46.1.60-69.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Li E., Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem. 1978 Nov 10;253(21):7762–7770. [PubMed] [Google Scholar]
  22. McCarthy M., Harrison S. C. Glycosidase susceptibility: a probe for the distribution of glycoprotein oligosaccharides in Sindbis virus. J Virol. 1977 Jul;23(1):61–73. doi: 10.1128/jvi.23.1.61-73.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pollack L., Atkinson P. H. Correlation of glycosylation forms with position in amino acid sequence. J Cell Biol. 1983 Aug;97(2):293–300. doi: 10.1083/jcb.97.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reading C. L., Penhoet E. E., Ballou C. E. Carbohydrate structure of vesicular stomatitis virus glycoprotein. J Biol Chem. 1978 Aug 25;253(16):5600–5612. [PubMed] [Google Scholar]
  25. Rice C. M., Strauss J. H. Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2062–2066. doi: 10.1073/pnas.78.4.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robbins P. W., Hubbard S. C., Turco S. J., Wirth D. F. Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell. 1977 Dec;12(4):893–900. doi: 10.1016/0092-8674(77)90153-2. [DOI] [PubMed] [Google Scholar]
  27. Robertson J. S., Etchison J. R., Summers D. F. Glycosylation sites of vesicular stomatitis virus glycoprotein. J Virol. 1976 Sep;19(3):871–878. doi: 10.1128/jvi.19.3.871-878.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robertson M. A., Etchison J. R., Robertson J. S., Summers D. F., Stanley P. Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistnat CHO cells. Cell. 1978 Mar;13(3):515–526. doi: 10.1016/0092-8674(78)90325-2. [DOI] [PubMed] [Google Scholar]
  29. Rose J. K., Gallione C. J. Nucleotide sequences of the mRNA's encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions. J Virol. 1981 Aug;39(2):519–528. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. III. Identification of an alpha-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J Biol Chem. 1978 Nov 10;253(21):7779–7786. [PubMed] [Google Scholar]
  31. Tabas I., Schlesinger S., Kornfeld S. Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem. 1978 Feb 10;253(3):716–722. [PubMed] [Google Scholar]
  32. Tulsiani D. R., Hubbard S. C., Robbins P. W., Touster O. alpha-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. J Biol Chem. 1982 Apr 10;257(7):3660–3668. [PubMed] [Google Scholar]
  33. Tulsiani D. R., Touster O. Swainsonine causes the production of hybrid glycoproteins by human skin fibroblasts and rat liver Golgi preparations. J Biol Chem. 1983 Jun 25;258(12):7578–7585. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES