Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Sep 17;80(Pt 10):1020–1023. doi: 10.1107/S205698902400882X

Crystal structure of bis­(μ2-5-nona­noylquinolin-8-olato)bis­[aqua­dichlorido­indium(III)]

Betty Fuhrmann a, Eric Meier a, Monika Mazik a,*
Editor: T Akitsub
PMCID: PMC11451490  PMID: 39372186

An analysis of the complex structure obtained by crystallization of 5-nona­noyl-8-hy­droxy­quinoline and InCl3 in aceto­nitrile is reported.

Keywords: crystal structure, indium complex, quinoline, 8-hy­droxy­quinoline, hydrogen bonds, van der Waals interactions

Abstract

Crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile yields a dinuclear InIII complex crystallizing in the space group PInline graphic. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol­ecule and two 8-quinolino­late ions. The crystal of the title complex is composed of two-dimensional supra­molecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts.

1. Chemical context

As a result of the remarkable complexing properties of 8-hy­droxy­quinoline and its substituted derivatives towards various metal ions, their use as extracting agents for these ionic substrates has received much attention (for examples, see: Uhlemann et al., 1984; Filik et al., 1994; Gloe et al., 1996; Yamada et al., 2006). In addition, their application in the formation of luminescent coordination compounds has been the subject of intensive research (Matsumura et al., 1996; Montes et al., 2006; Feng et al., 2007, 2008). Furthermore, 8-hy­droxy­quinoline-based building blocks have been used to construct artificial receptors, such as carbohydrate receptors (Mazik et al., 2011; Geffert et al., 2013), and have formed the basis for the development of various supra­molecular architectures (Albrecht et al., 2008).

Our previous studies on the extraction of indium ions by 8-hy­droxy­quinolines bearing alkanoyl or alkyl groups of different chain lengths showed that the 5-alkanoyl derivatives are more effective indium extractors than the analogues containing 5-alkyl-, 7-alkanoyl- or 7-alkyl substituents (Schulze et al., 2019). The derivative with the n-nona­noyl group at the 5-position proved to be a particularly effective extractor for indium ions, showing not only the best selectivity for indium over iron and zinc ions, but also the most favorable extraction kinetics under the chosen experimental conditions.1.

In this article we describe the crystal structure of a dinuclear InIII complex obtained by crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile.

2. Structural commentary

The title complex crystallizes in the centrosymmetric space group PInline graphic with one half of the complex in the asymmetric unit of the cell. This structural motif is expanded by an inversion center to form a dinuclear complex as depicted in Fig. 1. Within the asymmetric unit, the indium ion is fivefold coordinated via one water mol­ecule and two chloride ions as well as the atoms N1 and O1 of the bidentate quinolino­late ligand. The sixth coordination site of the metal center is occupied by the quinolino­late oxygen atom O1 of the inversion-related fragment of the complex, so that each InIII center adopts a distorted octa­hedral coordination geometry of the composition NO3Cl2. The In—Y bond lengths (Y = N, O, Cl) are listed in Table 1 and range between 2.17 and 2.43 Å. The nona­noyl fragment of the quinolino­late ligand exists in an elongated conformation. The complex structure is stabilized by intra­molecular hydrogen bonds involving the water hydrogen atom H3B and the chloride ion Cl2 [d(H⋯Cl) = 2.27 (4) Å, O—H⋯Cl = 165 (4)°] as well as C—H⋯O contacts between the nona­noyl oxygen atom O2 and the arene hydrogen atom H3 [d(H⋯O) = 2.21 Å, C—H⋯O = 122°].

Figure 1.

Figure 1

Perspective view of the mol­ecular structure of the title complex including the labeling of atoms in the asymmetric unit. The ellipsoids correspond to the thermal displacement at 50% probability.

Table 1. Geometric data (Å, °) for short intra- and inter­molecular inter­actions.

CgA is the centroid of the N1/C1–C4/C9 ring.

In—Y   In–Y    
In1—O1i 2.166 (3) In1—N1ii 2.241 (4)  
In1—O1ii 2.209 (3) In1—Cl1ii 2.382 (2)  
In1—O3ii 2.227 (4) In1—Cl2ii 2.430 (2)  
         
D—H⋯A/Cg D—H H⋯A/Cg DA/Cg D—H⋯A/Cg
O3—H3A⋯O2iii 0.84 (4) 1.84 (4) 2.668 (4) 168 (5)
O3—H3B⋯Cl2i 0.92 (4) 2.27 (4) 3.165 (4) 165 (4)
C1—H1⋯Cl1iv 0.95 2.76 3.417 (6) 127
C2—H2⋯Cl1iv 0.95 2.89 3.469 (5) 120
C3—H3⋯O2ii 0.95 2.21 2.835 (6) 122
C15—H15ACgAv 0.99 2.94 3.766 (6) 141

Symmetry codes: (i) x − 1, −y + 1, −z + 1; (ii) x, y, z; (iii) −x + 2, −y, −z + 1; (iv) −x + 1, −y, −z + 1; (v) x + 1, y, z.

3. Supra­molecular features

Regarding the packing behavior of the dinuclear complexes, hydrogen bonds play an important role. On one hand, the observed inter­action between the water hydrogen atom H3A and the carbonyl oxygen atom O2 [d =1.84 (4) Å, C—H⋯O = 168 (5)°; see Fig. 2] of adjacent mol­ecules leads to the formation of infinite supra­molecular chains in the [10Inline graphic] direction. On the other hand, weaker Carene—H⋯Cl hydrogen bonds with the chloride ion Cl2 acting as a bifurcated acceptor for H1 and H2 of the neighboring mol­ecule (see Fig. 3a and Table 1) crosslink these chains along the b axis to form a two-dimensional supra­molecular network.

Figure 2.

Figure 2

Supra­molecular chain formed by strong hydrogen bonds; color code: N – blue, O – red, Cl – green, In – magenta, C/H – gray.

Figure 3.

Figure 3

(a) Chain-like association of complex mol­ecules via C—H⋯Cl inter­actions; color code: N – blue, O – red, Cl – green, In – magenta, C/H – gray. (b) Excerpt of the packing structure showing two supra­molecular networks assembled via hydrogen bonds (dashed lines). Their mutual inter­actions are largely restricted to dispersive forces between inter­locking aliphatic moieties. (c) Graphical representation of weak inter­actions in which the aliphatic substituents participate.

The packing structure of the complex shown in Fig. 3b indicates that the parallel orientation of the aliphatic C8H17 units has a strong influence on the cohesion of the crystal structure by van der Waals forces. They are supported by C—H⋯π inter­actions between H15A and the heterocyclic subunit (A) of the quinoline scaffold (see Fig. 3c and Table 1). In addition, the inter­actions between H17B and C6 of the quinoline ring appear to have a stabilizing effect. Other contacts involving the aromatic rings are absent in the crystal, as the closest CgCg distances between their centroids amount to about 4.2 Å.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.44, update of September 2023; Groom et al., 2016) for indium complexes with ligands based on 8-hy­droxy­quinoline yielded 15 hits. The quinolines often occur as individual ligands within the complexes, but sometimes they are also incorporated as a subunit of larger mol­ecules.

Common to all complexes is that the 8-quinolino­late acts as a chelating ligand, complexing the indium ion via its oxygen and ring nitro­gen atom. The reported indium complexes are predominantly mononuclear. However, three dinuclear complexes are also included in the database entries mentioned above. In the case of the dinuclear chelate complexes, the indium ions possess coordination numbers of six (ALESES; Alexander et al., 2021) or five (SOMYOL, SOMZEC; Kwak et al., 2019). The mononuclear complexes mostly have a coordination number of six, but occasionally the indium ion is coordinated five-, seven- or eightfold.

In the crystal structure with the reference code ALESES, the indium ion adopts a coordination environment of the composition N2O3Cl. Since this complex lacks a quinoline-bound keto group and no water mol­ecule is involved, a strand-like association as in the crystal structure of the title complex cannot be observed. Instead, weak Car­yl—H⋯Cl and Car­yl—H⋯O hydrogen bonds as well as π⋯π contacts between the quinoline units of adjacent complexes lead to the formation of two-dimensional supra­molecular networks. The packing structures of the complexes with the reference codes SOMYOL and SOMZEC, containing NO2C2-coordinated indium ions, consist of an infinite strand-like arrangement of mol­ecules connected by π⋯π inter­actions similar to those mentioned above.

5. Synthesis and crystallization

5-Nonanoyl-8-hy­droxy­quinoline (50 mg, 0.18 mmol) and indium(III) chloride (116 mg, 0.52 mmol) were stirred in methanol (5 mL) for 30 min at room temperature and the solvent was removed under vacuum. Afterwards the residue was crystallized by slow evaporation from aceto­nitrile. 5-Nonanoyl-8-hy­droxy­quinoline was synthesized according to the literature procedure (Uhlemann et al., 1981).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. Both hydrogen atoms of the water mol­ecule (H3A, H3B) were located in difference-Fourier maps and placed accordingly. The remaining hydrogen atoms were positioned geometrically and refined isotropically using a riding model, with C—H bond distances of 0.95 Å (ar­yl), 0.98 Å (methyl­ene) and 0.99 Å (meth­yl). The thermal displace­ment ellipsoids of all hydrogen atoms were set to Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5 Ueq(C/O), the latter applying to methyl and water moieties.

Table 2. Experimental details.

Crystal data
Chemical formula [In2(C18H22NO2)2Cl4(H2O)2]
M r 976.20
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 163
a, b, c (Å) 10.297 (4), 10.940 (4), 11.711 (5)
α, β, γ (°) 63.57 (3), 72.47 (3), 62.92 (3)
V3) 1043.8 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.19 × 0.10 × 0.07
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-RED32; Stoe & Cie, 2002)
Tmin, Tmax 0.766, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 62899, 62899, 42801
R int 0.039
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.061, 0.88
No. of reflections 62899
No. of parameters 234
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.94, −0.74

Computer programs: X-AREA, X-RED32 and LANA (Stoe & Cie, 2002), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), XP in SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).

The crystal was refined as a two-component non-merohedral twin, whereby the main domain makes up 72% of the crystal. The two domains were identified and integrated simultaneously via the Recipe/Index/Refine and Integrate modules, respectively, of the X-AREA program suite, followed by absorption correction and scaling of the resulting HKLF5 dataset via the modules X-RED32 and LANA, respectively (Stoe & Cie, 2002). The reflection file employed in the subsequent refinement contained reflections from the two individual domains as well as reflections to which both domains contributed.

By recognizing twinning, the R-values as well as the maximum residual electron density (Table 2) improved drastically compared to the model based on untreated HKLF4 data (R1 = 7.24%, wR2 = 22.71%, maximum electron density = 3.94 e Å−3).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400882X/jp2009sup1.cif

e-80-01020-sup1.cif (2.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400882X/jp2009Isup2.hkl

e-80-01020-Isup2.hkl (4.9MB, hkl)
e-80-01020-Isup3.cdx (6.9KB, cdx)

Supporting information file. DOI: 10.1107/S205698902400882X/jp2009Isup3.cdx

CCDC reference: 2382976

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank the Audi Stiftung für Umwelt for funding. Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

supplementary crystallographic information

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Crystal data

[In2(C18H22NO2)2Cl4(H2O)2] Z = 1
Mr = 976.20 F(000) = 492
Triclinic, P1 Dx = 1.553 Mg m3
a = 10.297 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.940 (4) Å Cell parameters from 24127 reflections
c = 11.711 (5) Å θ = 2.2–28.7°
α = 63.57 (3)° µ = 1.40 mm1
β = 72.47 (3)° T = 163 K
γ = 62.92 (3)° Plate, colourless
V = 1043.8 (8) Å3 0.19 × 0.10 × 0.07 mm

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Data collection

Stoe Stadivari diffractometer 62899 independent reflections
Radiation source: Primux 50 Mo 42801 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.039
Detector resolution: 5.81 pixels mm-1 θmax = 27.5°, θmin = 2.2°
rotation method, ω scans h = −13→13
Absorption correction: multi-scan (X-Red32; Stoe & Cie, 2002) k = −14→14
Tmin = 0.766, Tmax = 0.907 l = −15→15
62899 measured reflections

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0118P)2] where P = (Fo2 + 2Fc2)/3
S = 0.88 (Δ/σ)max = 0.001
62899 reflections Δρmax = 0.94 e Å3
234 parameters Δρmin = −0.74 e Å3
0 restraints

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7219 (4) 0.0957 (5) 0.3966 (5) 0.0270 (12)
H1 0.6420 0.0662 0.4143 0.032*
C2 0.8613 (4) 0.0088 (5) 0.3551 (4) 0.0284 (12)
H2 0.8760 −0.0788 0.3459 0.034*
C3 0.9763 (4) 0.0515 (5) 0.3279 (4) 0.0260 (12)
H3 1.0710 −0.0055 0.2973 0.031*
C4 0.9562 (4) 0.1795 (5) 0.3447 (4) 0.0202 (11)
C5 1.0678 (4) 0.2360 (5) 0.3187 (4) 0.0226 (11)
C6 1.0297 (4) 0.3609 (5) 0.3417 (5) 0.0266 (12)
H6 1.1039 0.3973 0.3255 0.032*
C7 0.8868 (4) 0.4380 (5) 0.3880 (4) 0.0260 (12)
H7 0.8668 0.5223 0.4053 0.031*
C8 0.7761 (4) 0.3912 (5) 0.4080 (4) 0.0202 (11)
C9 0.8106 (4) 0.2605 (5) 0.3875 (4) 0.0202 (11)
C10 1.2233 (4) 0.1595 (5) 0.2701 (5) 0.0252 (12)
C11 1.3194 (4) 0.2486 (5) 0.2001 (5) 0.0274 (12)
H11A 1.3243 0.2894 0.2584 0.033*
H11B 1.2720 0.3328 0.1255 0.033*
C12 1.4756 (4) 0.1645 (5) 0.1521 (5) 0.0301 (13)
H12A 1.4734 0.1317 0.0866 0.036*
H12B 1.5228 0.0760 0.2244 0.036*
C13 1.5642 (4) 0.2633 (5) 0.0937 (5) 0.0312 (13)
H13A 1.5621 0.2980 0.1595 0.037*
H13B 1.5156 0.3510 0.0216 0.037*
C14 1.7255 (4) 0.1892 (5) 0.0439 (5) 0.0327 (13)
H14A 1.7693 0.0905 0.1089 0.039*
H14B 1.7296 0.1761 −0.0356 0.039*
C15 1.8144 (4) 0.2809 (5) 0.0162 (5) 0.0340 (13)
H15A 1.8062 0.2969 0.0953 0.041*
H15B 1.7710 0.3785 −0.0501 0.041*
C16 1.9767 (4) 0.2114 (5) −0.0297 (5) 0.0404 (14)
H16A 2.0183 0.1097 0.0320 0.048*
H16B 1.9861 0.2058 −0.1140 0.048*
C17 2.0644 (4) 0.2983 (6) −0.0424 (5) 0.0453 (15)
H17A 2.0549 0.3039 0.0420 0.054*
H17B 2.0225 0.4001 −0.1039 0.054*
C18 2.2278 (4) 0.2295 (6) −0.0887 (5) 0.066 (2)
H18A 2.2719 0.1317 −0.0248 0.099*
H18B 2.2781 0.2924 −0.1001 0.099*
H18C 2.2379 0.2203 −0.1707 0.099*
Cl1 0.34019 (11) 0.21319 (13) 0.53300 (14) 0.0374 (4)
Cl2 0.38785 (12) 0.53711 (14) 0.27233 (13) 0.0403 (4)
In1 0.47713 (3) 0.36247 (4) 0.47732 (4) 0.02240 (9)
N1 0.6970 (3) 0.2161 (4) 0.4119 (4) 0.0220 (9)
O1 0.6352 (2) 0.4620 (3) 0.4468 (3) 0.0220 (8)
O2 1.2707 (3) 0.0302 (3) 0.2842 (4) 0.0403 (10)
O3 0.5333 (3) 0.2442 (3) 0.6779 (3) 0.0288 (9)
H3A 0.588 (4) 0.154 (5) 0.700 (5) 0.043*
H3B 0.559 (4) 0.294 (5) 0.707 (4) 0.043*

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.026 (3) 0.023 (3) 0.035 (4) −0.012 (2) 0.000 (2) −0.013 (3)
C2 0.029 (2) 0.019 (3) 0.040 (4) −0.007 (2) 0.000 (2) −0.017 (3)
C3 0.023 (2) 0.019 (3) 0.030 (3) −0.003 (2) 0.001 (2) −0.012 (3)
C4 0.021 (2) 0.016 (3) 0.021 (3) −0.004 (2) −0.002 (2) −0.007 (2)
C5 0.018 (2) 0.019 (3) 0.029 (3) −0.003 (2) −0.003 (2) −0.011 (2)
C6 0.016 (2) 0.024 (3) 0.039 (4) −0.007 (2) −0.001 (2) −0.014 (3)
C7 0.023 (2) 0.019 (3) 0.039 (4) −0.006 (2) −0.001 (2) −0.017 (3)
C8 0.019 (2) 0.016 (3) 0.021 (3) −0.003 (2) −0.002 (2) −0.007 (2)
C9 0.019 (2) 0.016 (3) 0.025 (3) −0.003 (2) −0.006 (2) −0.008 (2)
C10 0.021 (2) 0.024 (3) 0.030 (3) −0.003 (2) −0.007 (2) −0.013 (3)
C11 0.021 (2) 0.027 (3) 0.035 (4) −0.009 (2) 0.002 (2) −0.015 (3)
C12 0.018 (2) 0.033 (3) 0.039 (4) −0.004 (2) −0.001 (2) −0.020 (3)
C13 0.023 (2) 0.033 (3) 0.037 (4) −0.009 (2) 0.000 (2) −0.017 (3)
C14 0.022 (2) 0.037 (3) 0.037 (4) −0.008 (2) 0.000 (2) −0.017 (3)
C15 0.026 (3) 0.036 (3) 0.038 (4) −0.013 (2) 0.000 (2) −0.013 (3)
C16 0.026 (3) 0.056 (4) 0.040 (4) −0.018 (3) 0.004 (2) −0.020 (3)
C17 0.032 (3) 0.068 (4) 0.036 (4) −0.029 (3) 0.003 (3) −0.013 (3)
C18 0.033 (3) 0.106 (6) 0.065 (5) −0.036 (3) 0.008 (3) −0.035 (4)
Cl1 0.0307 (6) 0.0322 (8) 0.0596 (11) −0.0178 (6) 0.0014 (6) −0.0234 (8)
Cl2 0.0544 (8) 0.0296 (8) 0.0394 (10) −0.0098 (7) −0.0191 (7) −0.0124 (7)
In1 0.01802 (15) 0.01785 (17) 0.0336 (2) −0.00564 (12) −0.00088 (14) −0.01387 (16)
N1 0.0185 (18) 0.018 (2) 0.030 (3) −0.0068 (17) 0.0014 (17) −0.011 (2)
O1 0.0158 (15) 0.0197 (17) 0.032 (2) −0.0057 (13) 0.0026 (13) −0.0154 (17)
O2 0.0220 (17) 0.022 (2) 0.069 (3) −0.0035 (15) 0.0001 (17) −0.018 (2)
O3 0.0322 (18) 0.0194 (19) 0.032 (2) −0.0070 (15) −0.0026 (16) −0.0109 (18)

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Geometric parameters (Å, º)

C1—N1 1.308 (5) C13—H13A 0.9900
C1—C2 1.396 (5) C13—H13B 0.9900
C1—H1 0.9500 C14—C15 1.522 (5)
C2—C3 1.367 (5) C14—H14A 0.9900
C2—H2 0.9500 C14—H14B 0.9900
C3—C4 1.414 (5) C15—C16 1.524 (5)
C3—H3 0.9500 C15—H15A 0.9900
C4—C9 1.420 (5) C15—H15B 0.9900
C4—C5 1.437 (5) C16—C17 1.522 (6)
C5—C6 1.368 (6) C16—H16A 0.9900
C5—C10 1.497 (5) C16—H16B 0.9900
C6—C7 1.402 (5) C17—C18 1.534 (5)
C6—H6 0.9500 C17—H17A 0.9900
C7—C8 1.372 (5) C17—H17B 0.9900
C7—H7 0.9500 C18—H18A 0.9800
C8—O1 1.344 (4) C18—H18B 0.9800
C8—C9 1.421 (6) C18—H18C 0.9800
C9—N1 1.370 (5) Cl1—In1 2.3825 (14)
C10—O2 1.215 (5) Cl2—In1 2.4302 (19)
C10—C11 1.511 (5) In1—O1i 2.166 (3)
C11—C12 1.522 (5) In1—O1 2.209 (3)
C11—H11A 0.9900 In1—O3 2.227 (4)
C11—H11B 0.9900 In1—N1 2.241 (3)
C12—C13 1.528 (5) O1—In1i 2.166 (3)
C12—H12A 0.9900 O3—H3A 0.84 (4)
C12—H12B 0.9900 O3—H3B 0.92 (4)
C13—C14 1.538 (5)
N1—C1—C2 122.5 (4) C15—C14—H14B 109.4
N1—C1—H1 118.7 C13—C14—H14B 109.4
C2—C1—H1 118.7 H14A—C14—H14B 108.0
C3—C2—C1 119.0 (4) C14—C15—C16 114.1 (4)
C3—C2—H2 120.5 C14—C15—H15A 108.7
C1—C2—H2 120.5 C16—C15—H15A 108.7
C2—C3—C4 120.8 (4) C14—C15—H15B 108.7
C2—C3—H3 119.6 C16—C15—H15B 108.7
C4—C3—H3 119.6 H15A—C15—H15B 107.6
C3—C4—C9 116.0 (4) C17—C16—C15 112.3 (4)
C3—C4—C5 125.9 (4) C17—C16—H16A 109.1
C9—C4—C5 118.0 (4) C15—C16—H16A 109.1
C6—C5—C4 118.3 (4) C17—C16—H16B 109.1
C6—C5—C10 120.2 (4) C15—C16—H16B 109.1
C4—C5—C10 121.4 (4) H16A—C16—H16B 107.9
C5—C6—C7 123.5 (4) C16—C17—C18 112.7 (4)
C5—C6—H6 118.2 C16—C17—H17A 109.0
C7—C6—H6 118.2 C18—C17—H17A 109.0
C8—C7—C6 119.7 (4) C16—C17—H17B 109.0
C8—C7—H7 120.2 C18—C17—H17B 109.0
C6—C7—H7 120.2 H17A—C17—H17B 107.8
O1—C8—C7 123.6 (4) C17—C18—H18A 109.5
O1—C8—C9 117.5 (3) C17—C18—H18B 109.5
C7—C8—C9 118.9 (4) H18A—C18—H18B 109.5
N1—C9—C4 121.8 (4) C17—C18—H18C 109.5
N1—C9—C8 116.8 (4) H18A—C18—H18C 109.5
C4—C9—C8 121.4 (4) H18B—C18—H18C 109.5
O2—C10—C5 121.4 (4) O1i—In1—O1 72.65 (11)
O2—C10—C11 120.6 (4) O1i—In1—O3 78.60 (12)
C5—C10—C11 118.0 (4) O1—In1—O3 84.69 (12)
C10—C11—C12 115.3 (4) O1i—In1—N1 144.79 (11)
C10—C11—H11A 108.5 O1—In1—N1 73.40 (11)
C12—C11—H11A 108.5 O3—In1—N1 89.29 (13)
C10—C11—H11B 108.5 O1i—In1—Cl1 112.71 (8)
C12—C11—H11B 108.5 O1—In1—Cl1 169.15 (8)
H11A—C11—H11B 107.5 O3—In1—Cl1 87.16 (9)
C11—C12—C13 109.9 (3) N1—In1—Cl1 99.38 (10)
C11—C12—H12A 109.7 O1i—In1—Cl2 89.09 (9)
C13—C12—H12A 109.7 O1—In1—Cl2 91.53 (9)
C11—C12—H12B 109.7 O3—In1—Cl2 167.69 (9)
C13—C12—H12B 109.7 N1—In1—Cl2 100.88 (11)
H12A—C12—H12B 108.2 Cl1—In1—Cl2 97.88 (6)
C12—C13—C14 114.7 (4) C1—N1—C9 119.8 (3)
C12—C13—H13A 108.6 C1—N1—In1 124.9 (3)
C14—C13—H13A 108.6 C9—N1—In1 115.3 (3)
C12—C13—H13B 108.6 C8—O1—In1i 134.6 (2)
C14—C13—H13B 108.6 C8—O1—In1 117.0 (2)
H13A—C13—H13B 107.6 In1i—O1—In1 107.35 (11)
C15—C14—C13 111.3 (4) In1—O3—H3A 118 (3)
C15—C14—H14A 109.4 In1—O3—H3B 115 (3)
C13—C14—H14A 109.4 H3A—O3—H3B 112 (4)
N1—C1—C2—C3 −0.8 (7) C4—C5—C10—O2 −20.8 (7)
C1—C2—C3—C4 1.7 (7) C6—C5—C10—C11 −23.3 (6)
C2—C3—C4—C9 −1.6 (7) C4—C5—C10—C11 157.9 (4)
C2—C3—C4—C5 −179.6 (4) O2—C10—C11—C12 −0.7 (7)
C3—C4—C5—C6 −179.3 (5) C5—C10—C11—C12 −179.4 (4)
C9—C4—C5—C6 2.8 (7) C10—C11—C12—C13 −175.2 (4)
C3—C4—C5—C10 −0.5 (7) C11—C12—C13—C14 178.9 (4)
C9—C4—C5—C10 −178.4 (4) C12—C13—C14—C15 −166.9 (4)
C4—C5—C6—C7 −0.8 (7) C13—C14—C15—C16 178.2 (4)
C10—C5—C6—C7 −179.6 (4) C14—C15—C16—C17 −173.9 (4)
C5—C6—C7—C8 −2.3 (7) C15—C16—C17—C18 −179.9 (4)
C6—C7—C8—O1 −177.0 (4) C2—C1—N1—C9 −0.3 (7)
C6—C7—C8—C9 3.2 (7) C2—C1—N1—In1 179.8 (3)
C3—C4—C9—N1 0.5 (6) C4—C9—N1—C1 0.5 (7)
C5—C4—C9—N1 178.6 (4) C8—C9—N1—C1 −179.1 (4)
C3—C4—C9—C8 180.0 (4) C4—C9—N1—In1 −179.6 (3)
C5—C4—C9—C8 −1.8 (7) C8—C9—N1—In1 0.8 (5)
O1—C8—C9—N1 −1.4 (6) C7—C8—O1—In1i −12.1 (7)
C7—C8—C9—N1 178.4 (4) C9—C8—O1—In1i 167.7 (3)
O1—C8—C9—C4 179.1 (4) C7—C8—O1—In1 −178.5 (4)
C7—C8—C9—C4 −1.1 (7) C9—C8—O1—In1 1.3 (5)
C6—C5—C10—O2 157.9 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O2ii 0.84 (4) 1.84 (4) 2.668 (4) 168 (5)
O3—H3B···Cl2i 0.92 (4) 2.27 (4) 3.165 (4) 165 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z+1.

References

  1. Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev.252, 812–824.
  2. Alexander, O. T., Duvenhage, M. M., Kroon, R. E., Brink, A. & Visser, H. G. (2021). New J. Chem.45, 2132–2140.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  4. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  5. Feng, L., Wang, X. & Chen, Z. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc.71, 312–316. [DOI] [PubMed]
  6. Feng, L., Wang, X., Zhao, S. & Chen, Z. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc.68, 646–650. [DOI] [PubMed]
  7. Filik, H. & Apak, R. (1994). Sep. Sci. Technol.29, 2047–2066.
  8. Geffert, C., Kuschel, M. & Mazik, M. (2013). J. Org. Chem.78, 292–300. [DOI] [PubMed]
  9. Gloe, K., Stephan, H., Krüger, T., Möckel, A., Woller, N., Subklew, G., Schwuger, M. J., Neumann, R. & Weber, E. (1996). Prog. Colloid Polym. Sci.101, 145–148.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Kwak, S. W., Kim, M. B., Shin, H., Lee, J. H., Hwang, H., Ryu, J. Y., Lee, J., Kim, M., Chung, Y., Choe, J. C., Kim, Y., Lee, K. M. & Park, M. H. (2019). Inorg. Chem.58, 8056–8063. [DOI] [PubMed]
  12. Matsumura, M. & Akai, T. (1996). Jpn. J. Appl. Phys.35, 5357–5360.
  13. Mazik, M. & Geffert, C. (2011). Org. Biomol. Chem.9, 2319–2326. [DOI] [PubMed]
  14. Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. (2006). Chem. Eur. J.12, 4523–4535. [DOI] [PubMed]
  15. Schulze, M., Löwe, R., Pollex, R. & Mazik, M. (2019). Monatsh. Chem.150, 983–990.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Stoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany.
  20. Uhlemann, E., Mickler, W., Ludwig, E., Ludwig, E. & Klose, G. (1981). J. Prakt. Chem.323, 521–524.
  21. Uhlemann, E., Weber, W., Fischer, C. & Raab, M. (1984). Anal. Chim. Acta, 156, 201–206.
  22. Yamada, H., Hayashi, H. & Yasui, T. (2006). Anal. Sci.22, 371–376. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400882X/jp2009sup1.cif

e-80-01020-sup1.cif (2.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400882X/jp2009Isup2.hkl

e-80-01020-Isup2.hkl (4.9MB, hkl)
e-80-01020-Isup3.cdx (6.9KB, cdx)

Supporting information file. DOI: 10.1107/S205698902400882X/jp2009Isup3.cdx

CCDC reference: 2382976

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES