Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jul 1;229(1):161–166. doi: 10.1042/bj2290161

The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter.

M D Brand
PMCID: PMC1145162  PMID: 3929768

Abstract

Rat heart mitochondria respiring on succinate in the presence of Ruthenium Red (to inhibit uptake on the Ca2+ uniporter) released Ca2+ on the calcium/sodium antiporter until a steady state was reached. Addition of the ionophore A23187 (which catalyses Ca2+/2H+ exchange) did not perturb this steady state. Thermodynamic analysis showed that if a Ca2+/nNa+ exchange with any value of n other than 2 was at equilibrium, addition of A23187 would cause an obvious change in extramitochondrial free [Ca2+]. Therefore the endogenous calcium/sodium antiporter of mitochondria catalyses electroneutral Ca2+/2Na+ exchange.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affolter H., Carafoli E. The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. Biochem Biophys Res Commun. 1980 Jul 16;95(1):193–196. doi: 10.1016/0006-291x(80)90723-8. [DOI] [PubMed] [Google Scholar]
  2. Brand M. D. Electroneutral efflux of Ca2+ from liver mitochondria. Biochem J. 1985 Jan 15;225(2):413–419. doi: 10.1042/bj2250413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown G. C., Brand M. D. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J. 1985 Jan 15;225(2):399–405. doi: 10.1042/bj2250399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coll K. E., Joseph S. K., Corkey B. E., Williamson J. R. Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria. J Biol Chem. 1982 Aug 10;257(15):8696–8704. [PubMed] [Google Scholar]
  5. Crompton M., Heid I., Baschera C., Carafoli E. The resolution of calcium fluxes in heart and liver mitochondria using the lanthanide series. FEBS Lett. 1979 Aug 15;104(2):352–354. doi: 10.1016/0014-5793(79)80850-9. [DOI] [PubMed] [Google Scholar]
  6. Crompton M., Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem. 1978 Nov 15;91(2):599–608. doi: 10.1111/j.1432-1033.1978.tb12713.x. [DOI] [PubMed] [Google Scholar]
  7. Crompton M., Künzi M., Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977 Oct 3;79(2):549–558. doi: 10.1111/j.1432-1033.1977.tb11839.x. [DOI] [PubMed] [Google Scholar]
  8. Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
  9. Denton R. M., McCormack J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980 Sep 22;119(1):1–8. doi: 10.1016/0014-5793(80)80986-0. [DOI] [PubMed] [Google Scholar]
  10. Goldstone T. P., Crompton M. Evidence for beta-adrenergic activation of Na+-dependent efflux of Ca2+ from isolated liver mitochondria. Biochem J. 1982 Apr 15;204(1):369–371. doi: 10.1042/bj2040369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldstone T. P., Duddridge R. J., Crompton M. The activation of Na+-dependent efflux of Ca2+ from liver mitochondria by glucagon and beta-adrenergic agonists. Biochem J. 1983 Feb 15;210(2):463–472. doi: 10.1042/bj2100463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris E. J., Heffron J. J. The stimulation of the release of Ca2+ from mitochondria by sodium ions and its inhibition. Arch Biochem Biophys. 1982 Oct 15;218(2):531–539. doi: 10.1016/0003-9861(82)90377-0. [DOI] [PubMed] [Google Scholar]
  13. Haworth R. A., Hunter D. R., Berkoff H. A. Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett. 1980 Feb 11;110(2):216–218. doi: 10.1016/0014-5793(80)80076-7. [DOI] [PubMed] [Google Scholar]
  14. Hayat L. H., Crompton M. Evidence for the existence of regulatory sites for Ca2+ on the Na+/Ca2+ carrier of cardiac mitochondria. Biochem J. 1982 Feb 15;202(2):509–518. doi: 10.1042/bj2020509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heffron J. J., Harris E. J. Stimulation of calcium-ion efflux from liver mitochondria by sodium ions and its response to ADP and energy state. Biochem J. 1981 Mar 15;194(3):925–929. doi: 10.1042/bj1940925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
  17. Nedergaard J., Cannon B. Effects of monovalent cations on Ca2 transport in mitochondria; a comparison between brown fat and liver mitochondria from rat. Acta Chem Scand B. 1980;34(2):149–151. doi: 10.3891/acta.chem.scand.34b-0149. [DOI] [PubMed] [Google Scholar]
  18. Nedergaard J. Na+-dependent regulation of extramitochondrial Ca2+ by rat-liver mitochondria. Eur J Biochem. 1984 Oct 1;144(1):159–168. doi: 10.1111/j.1432-1033.1984.tb08444.x. [DOI] [PubMed] [Google Scholar]
  19. Nicholls D. G. Calcium transport and porton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J. 1978 Mar 15;170(3):511–522. doi: 10.1042/bj1700511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nicholls D. G., Crompton M. Mitochondrial calcium transport. FEBS Lett. 1980 Mar 10;111(2):261–268. doi: 10.1016/0014-5793(80)80806-4. [DOI] [PubMed] [Google Scholar]
  21. Nicholls D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 1978 Nov 15;176(2):463–474. doi: 10.1042/bj1760463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicholls D., Akerman K. Mitochondrial calcium transport. Biochim Biophys Acta. 1982 Sep 1;683(1):57–88. doi: 10.1016/0304-4173(82)90013-1. [DOI] [PubMed] [Google Scholar]
  23. Pfeiffer D. R., Hutson S. M., Kauffman R. F., Lardy H. A. Some effects of ionophore A23187 on energy utilization and the distribution of cations and anions in mitochondria. Biochemistry. 1976 Jun 15;15(12):2690–2697. doi: 10.1021/bi00657a032. [DOI] [PubMed] [Google Scholar]
  24. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  25. Reeves J. P., Hale C. C. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem. 1984 Jun 25;259(12):7733–7739. [PubMed] [Google Scholar]
  26. Vághy P. L., Johnson J. D., Matlib M. A., Wang T., Schwartz A. Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J Biol Chem. 1982 Jun 10;257(11):6000–6002. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES