Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jul 1;229(1):205–211. doi: 10.1042/bj2290205

The apparent Km of ammonia for carbamoyl phosphate synthetase (ammonia) in situ.

N S Cohen, F S Kyan, S S Kyan, C W Cheung, L Raijman
PMCID: PMC1145168  PMID: 4038255

Abstract

Experiments with carbamoyl phosphate synthetase (ammonia) in solution and in isolated mitochondria are reported which show the following. NH3 rather than NH4+ is the substrate of the enzyme. The apparent Km of NH3 for the purified enzyme is about 38 microM. The apparent Km for NH3 measured in intact isolated mitochondria is about 13 microM. This value was obtained for both coupled and uncoupled mitochondria and was unchanged when the rate of carbamoyl phosphate synthesis was increased 2-fold by incubating uncoupled mitochondria in the presence of 5 mM-N-acetylglutamate. According to the literature, the concentration of NH3 in liver is well below the measured apparent Km. On the basis of this and previous work we conclude that, quantitatively, changes in liver [NH3] and [ornithine] are likely to be the most important factors in the fast regulation of synthesis of carbamoyl phosphate and urea. This conclusion is consistent with all available evidence obtained with isolated mitochondria, isolated hepatocytes, perfused liver and whole animals.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addanki A., Cahill F. D., Sotos J. F. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++. J Biol Chem. 1968 May 10;243(9):2337–2348. [PubMed] [Google Scholar]
  2. Akerboom T. P., Bookelman H., Zuurendonk P. F., van der Meer R., Tager J. M. Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats. Eur J Biochem. 1978 Mar 15;84(2):413–420. doi: 10.1111/j.1432-1033.1978.tb12182.x. [DOI] [PubMed] [Google Scholar]
  3. Bean E. S., Atkinson D. E. Regulation of the rate of urea synthesis in liver by extracellular pH. A major factor in pH homeostasis in mammals. J Biol Chem. 1984 Feb 10;259(3):1552–1559. [PubMed] [Google Scholar]
  4. Brosnan J. T., Krebs H. A., Williamson D. H. Effects of ischaemia on metabolite concentrations in rat liver. Biochem J. 1970 Mar;117(1):91–96. doi: 10.1042/bj1170091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CERIOTTI G., SPANDRIO L. A spectrophotometric method for determination of urea. Clin Chim Acta. 1963 Mar;8:295–299. doi: 10.1016/0009-8981(63)90171-2. [DOI] [PubMed] [Google Scholar]
  6. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  7. Cheung C. W., Raijman L. The regulation of carbamyl phosphate synthetase (ammonia) in rat liver mitochondria. Effects of acetylglutamate concentration and ATP translocation. J Biol Chem. 1980 Jun 10;255(11):5051–5057. [PubMed] [Google Scholar]
  8. Cohen N. S., Cheung C. W. Differential effects of N-acetylglutamate on citrulline synthesis by coupled and uncoupled mitochondria. Arch Biochem Biophys. 1984 Oct;234(1):31–44. doi: 10.1016/0003-9861(84)90321-7. [DOI] [PubMed] [Google Scholar]
  9. Cohen N. S., Cheung C. W., Kyan F. S., Jones E. E., Raijman L. Mitochondrial carbamyl phosphate and citrulline synthesis at high matrix acetylglutamate. J Biol Chem. 1982 Jun 25;257(12):6898–6907. [PubMed] [Google Scholar]
  10. Cohen N. S., Cheung C. W., Raijman L. The effects of ornithine on mitochondrial carbamyl phosphate synthesis. J Biol Chem. 1980 Nov 10;255(21):10248–10255. [PubMed] [Google Scholar]
  11. DUDA G. D., HANDLER P. Kinetics of ammonia metabolism in vivo. J Biol Chem. 1958 May;232(1):303–314. [PubMed] [Google Scholar]
  12. De Duve C. The separation and characterization of subcellular particles. Harvey Lect. 1965;59:49–87. [PubMed] [Google Scholar]
  13. Dodgson S. J., Forster R. E., 2nd, Schwed D. A., Storey B. T. Contribution of matrix carbonic anhydrase to citrulline synthesis in isolated guinea pig liver mitochondria. J Biol Chem. 1983 Jun 25;258(12):7696–7701. [PubMed] [Google Scholar]
  14. Elliott K. R., Tipton K. F. Kinetic studies of bovine liver carbamoyl phosphate synthetase. Biochem J. 1974 Sep;141(3):807–816. doi: 10.1042/bj1410807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris E. J., Bassett D. J. Distribution of ammonia and methylamine between mitochondria and suspension medium. FEBS Lett. 1971 Dec 15;19(3):214–216. doi: 10.1016/0014-5793(71)80516-1. [DOI] [PubMed] [Google Scholar]
  16. Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hensgens H. E., Verhoeven A. J., Meijer A. J. The relationship between intramitochondrial N-acetylglutamate and activity of carbamoyl-phosphate synthetase (ammonia). The effect of glucagon. Eur J Biochem. 1980;107(1):197–205. doi: 10.1111/j.1432-1033.1980.tb04640.x. [DOI] [PubMed] [Google Scholar]
  18. Hoek J. B., Nicholls D. G., Williamson J. R. Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem. 1980 Feb 25;255(4):1458–1464. [PubMed] [Google Scholar]
  19. Katunuma N., Okada M., Nishii Y. Regulation of the urea cycle and TCA cycle by ammonia. Adv Enzyme Regul. 1966;4:317–336. doi: 10.1016/0065-2571(66)90025-2. [DOI] [PubMed] [Google Scholar]
  20. Katz J., Wals P. A., Golden S., Raijman L. Mitochondrial-reticular cytostructure in liver cells. Biochem J. 1983 Sep 15;214(3):795–813. doi: 10.1042/bj2140795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krebs H. A., Hems R., Lund P. Some regulatory mechanisms in the synthesis of urea in the mammalian liver. Adv Enzyme Regul. 1973;11:361–377. doi: 10.1016/0065-2571(73)90024-1. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lof C., Cohen M., Vermeulen L. P., van Roermund C. W., Wanders R. J., Meijer A. J. Properties of carbamoyl-phosphate synthetase (ammonia) in rat-liver mitochondria made permeable with toluene. Eur J Biochem. 1983 Sep 15;135(2):251–258. doi: 10.1111/j.1432-1033.1983.tb07645.x. [DOI] [PubMed] [Google Scholar]
  24. Lusty C. J. Carbamyl phosphate synthetase. Bicarbonate-dependent hydrolysis of ATP and potassium activation. J Biol Chem. 1978 Jun 25;253(12):4270–4278. [PubMed] [Google Scholar]
  25. Marshall M., Cohen P. P. Ornithine transcarbamylase from Streptococcus faecalis and bovine liver. I. Isolation and subunit structure. J Biol Chem. 1972 Mar 25;247(6):1641–1653. [PubMed] [Google Scholar]
  26. McGivan J. D., Bradford N. M. Characteristics of the activation of glutaminase by ammonia in sonicated rat liver mitochondria. Biochim Biophys Acta. 1983 Sep 13;759(3):296–302. doi: 10.1016/0304-4165(83)90327-6. [DOI] [PubMed] [Google Scholar]
  27. McGivan J. D., Bradford N. M., Mendes-Mourão J. The regulation of carbamoyl phosphate synthase activity in rat liver mitochondria. Biochem J. 1976 Feb 15;154(2):415–421. doi: 10.1042/bj1540415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meijer A. J., Verhoeven A. J. N-acetylglutamate and urea synthesis. Biochem J. 1984 Oct 15;223(2):559–560. doi: 10.1042/bj2230559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meijer A. J., van Woerkom G. M. Control of the rate of citrulline synthesis by short-term changes in N-acetylglutamate levels in isolated rat-liver mitochondria. FEBS Lett. 1978 Feb 1;86(1):117–121. doi: 10.1016/0014-5793(78)80111-2. [DOI] [PubMed] [Google Scholar]
  30. Meijer A. J., van Woerkom G. M. Relationship between intramitochondrial citrate and the activity of carbamoyl-phosphate synthase (ammonia). Biochim Biophys Acta. 1977 Nov 7;500(1):13–26. doi: 10.1016/0304-4165(77)90042-3. [DOI] [PubMed] [Google Scholar]
  31. O'SULLIVAN W. J., PERRIN D. D. THE STABILITY CONSTANTS OF METAL-ADENINE NUCLEOTIDE COMPLEXES. Biochemistry. 1964 Jan;3:18–26. doi: 10.1021/bi00889a005. [DOI] [PubMed] [Google Scholar]
  32. Powers S. G. Regulation of rat liver carbamyl phosphate synthetase I. Inhibition by metal ions and activation by amino acids and other chelating agents. J Biol Chem. 1981 Nov 10;256(21):11160–11165. [PubMed] [Google Scholar]
  33. Raijman L., Bartulis T. Effect of ATP translocation on citrulline and oxaloacetate synthesis by isolated rat liver mitochondria. Arch Biochem Biophys. 1979 Jun;195(1):188–197. doi: 10.1016/0003-9861(79)90340-0. [DOI] [PubMed] [Google Scholar]
  34. Raushel F. M., Anderson P. M., Villafranca J. J. Kinetic mechanism of Escherichia coli carbamoyl-phosphate synthetase. Biochemistry. 1978 Dec 26;17(26):5587–5591. doi: 10.1021/bi00619a001. [DOI] [PubMed] [Google Scholar]
  35. Reijngoud D. J., Tager J. M. The permeability properties of the lysosomal membrane. Biochim Biophys Acta. 1977 Nov 14;472(3-4):419–449. doi: 10.1016/0304-4157(77)90005-3. [DOI] [PubMed] [Google Scholar]
  36. Rognstad R. CO2 metabolism in the liver. Arch Biochem Biophys. 1983 Apr 15;222(2):442–448. doi: 10.1016/0003-9861(83)90543-x. [DOI] [PubMed] [Google Scholar]
  37. Rubio V., Grisolia S. Mechanism of mitochondrial carbamoyl-phosphate synthetase: synthesis and properties of active CO2, precursor of carbamoyl phosphate. Biochemistry. 1977 Jan 25;16(2):321–329. doi: 10.1021/bi00621a025. [DOI] [PubMed] [Google Scholar]
  38. SCHIMKE R. T. Adaptive characteristics of urea cycle enzymes in the rat. J Biol Chem. 1962 Feb;237:459–468. [PubMed] [Google Scholar]
  39. Saheki T., Ohkubo T., Katsunuma T. Regulation of urea synthesis in rat liver. Increase in the concentrations of ornithine and acetylglutamate in rat liver in response to urea synthesis stimulated by the injection of an ammonium salt. J Biochem. 1978 Dec;84(6):1423–1430. doi: 10.1093/oxfordjournals.jbchem.a132264. [DOI] [PubMed] [Google Scholar]
  40. Sainsbury G. M. The distribution of ammonia between hepatocytes and extracellular fluid. Biochim Biophys Acta. 1980 Aug 13;631(2):305–316. doi: 10.1016/0304-4165(80)90304-9. [DOI] [PubMed] [Google Scholar]
  41. Shigesada K., Tatibana M. Role of acetylglutamate in ureotelism. I. Occurrence and biosynthesis of acetylglutamate in mouse and rat tissues. J Biol Chem. 1971 Sep 25;246(18):5588–5595. [PubMed] [Google Scholar]
  42. Stewart P. M., Walser M. Short term regulation of ureagenesis. J Biol Chem. 1980 Jun 10;255(11):5270–5280. [PubMed] [Google Scholar]
  43. Van Dijk M., Lund P. N-Acetylglutamate in rat liver during foetal development. Biochem J. 1984 Sep 15;222(3):837–838. doi: 10.1042/bj2220837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wanders R. J., Hoek J. B., Tager J. M. Origin of the ammonia found in protein-free extracts of rat-liver mitochondria and rat hepatocytes. Eur J Biochem. 1980 Sep;110(1):197–202. doi: 10.1111/j.1432-1033.1980.tb04855.x. [DOI] [PubMed] [Google Scholar]
  45. Williamson J. R., Steinman R., Coll K., Rich T. L. Energetics of citrulline synthesis by rat liver mitochondria. J Biol Chem. 1981 Jul 25;256(14):7287–7297. [PubMed] [Google Scholar]
  46. Wilson D. F., Forman N. G. Mitochondrial transmembrane pH and electrical gradients: evaluation of their energy relationships with respiratory rate and adenosine 5'-triphosphate synthesis. Biochemistry. 1982 Mar 16;21(6):1438–1444. doi: 10.1021/bi00535a051. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES