Abstract
Background
The characteristics of a tumor are largely determined by its interaction with the surrounding micro-environment (TME). TME consists of both cellular and non-cellular components. Cancer-associated fibroblasts (CAFs) are a major component of the TME. They are a source of many secreted factors that influence the survival and progression of tumors as well as their response to drugs. Identification of markers either overexpressed in CAFs or unique to CAFs would pave the way for novel therapeutic strategies that in combination with conventional chemotherapy are likely to have better patient outcome.
Methods
Fibroblasts have been derived from Benign Prostatic Hyperplasia (BPH) and prostate cancer. RNA from these has been used to perform a transcriptome analysis in order to get a comparative profile of normal and cancer-associated fibroblasts.
Results
The study has identified 818 differentially expressed mRNAs and 17 lincRNAs between normal and cancer-associated fibroblasts. Also, 15 potential lincRNA-miRNA-mRNA combinations have been identified which may be potential biomarkers.
Conclusions
This study identified differentially expressed markers between normal and cancer-associated fibroblasts that would help in targeted therapy against CAFs/derived factors, in combination with conventional therapy. However, this would in future need more experimental validation.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12885-024-13006-x.
Keywords: Tumor microenvironment, Cancer-associated fibroblasts, Chemoresistance, Non-coding RNA, LINCRNA, Prostate cancer
Introduction
The tumor microenvironment (TME) is a complex and dynamic ecosystem, which is shaped by the interactions between the tumor cells and the non-cancerous cells as well as the extra-cellular matrix surrounding the tumor. Although the framework and composition of the TME may vary according to the tumor type, some hallmarks of the TME remain the same. The TME is comprised of a variety of cell-types such as immune cells (T cells, B cells, Tregs, Neutrophils, Macrophages, Dendritic cells, Natural Killer cells, Mast cells etc.) cancer-associated fibroblasts (CAFs), endothelial cells (ECs), pericytes, adipocytes and neurons (Reviewed in [1]and references therin). The acellular components of the TME includes mostly secreted factors such as growth factors, cytokines, extracellular matrix (ECM) proteins, and metabolites [2]. The dynamic and reciprocal interactions between the tumor and its microenvironment influence cancer cell survival, local invasion, metastasis [3, 4], immune surveillance, angiogenesis [5] as well as response to therapy [6, 7].
One of the major cell types in the TME is cancer-associated fibroblasts. CAFs are a major source of growth factors, cytokines, and other signaling molecules, which impact cancer cell behavior [6]. When subjected to chemotherapy, along with the cancer cells, the CAFs also are subjected to changes. These therapies are likely to stimulate CAFs to release factors that could influence the stemness, metabolic status, signaling cascades, etc. within the tumor, which can prevent cancer cell eradication and perhaps cause recurrence [8]. In prostate cancer models, it has been observed that there is therapy induced activation of Wnt signal which can result in drug resistance [9, 10]. In pancreatic cancer, CAFs protect cancer cells from gemcitabine-induced cell death by activating NF-κB through IL-1β and IL‐1 receptor‐associated kinase 4 (IRAK4) [11]. In ESCC, cisplatin resistance is conferred by IL‐6/CXCR7 axis, where IL-6 is mainly secreted by the CAFs [12]. Transcriptome and proteome analysis from different models have emphasized the role of interleukins secreted by CAFs on conferring therapy resistance in various models (reviewed in [8]).
Cancer stem cells (CSC) have multiple mechanisms to overcome chemotherapy and TME has a significant influence in maintenance of CSCs. IL-17, secreted by CAFs and TGF-b signaling in CAFs have shown to influence the stemness of the CSCs [13, 14]. Besides, SHH signaling and its interaction with HIF-1a are observed to enhance the CSC properties [15, 16]. In a breast cancer model, CAF-derived miR-221 activated an ERlow/Notchhigh feed-forward loop responsible for the generation of CD133high CSCs [17]. Multiple studies have shown that CAF derived Interleukins, Wnt as well as ncRNAs influence the CSC population and hence therapeutic resistance (reviewed in [8]).
Metabolic changes in CAFs have received significant attention over the last few years. PI3K/AKT pathway in cancer cells, has been observed to induce Warburg effect in CAFs through cytoplasmic translocation of the nuclear G-protein‐coupled estrogen receptor (GPER) and aberrant activation of the GPER signaling pathway. CAFs in turn deliver lactate transporters to cancer cells, resulting in a coupled energy metabolism process that can increase drug resistance [18]. These and other metabolic changes need to be explored further for their role in conferring resistance.
CAFs are pivotal in driving cancer progression through their involvement in processes such as extracellular matrix (ECM) deposition and remodeling, extensive communication with cancer cells, promoting epithelial-to-mesenchymal transition (EMT), facilitating invasion, metastasis, and even contributing to therapy resistance [19]. CAFs are also recognized for their involvement in developing resistance to anti-cancer therapy by providing a protective environment for tumor cells. There exists a symbiotic relationship between tumor cells and CAFs, wherein CAFs provide the necessary resources for tumor cell growth and survival, thereby contributing to the development of a chemoresistant phenotype [20]. Considering the pleiotropic effects of the tumor microenvironment, particularly CAFs, an insight into the specific factors responsible for therapeutic resistance can potentially pave the way for newer and more effective strategies for treatment. The major hurdle in this direction is the lack of distinguishing biomarkers for CAFs that would allow for their exclusive targeting. There is a high heterogeneity of CAF functions- both pro-tumorigenic and anti-tumorigenic within the same tumor [21]. Hence targeting the CAFs/derived factors has to be done with extreme caution to avoid adverse effects. Additionally, targeting CAFs might lead to significant clinical benefits, as pro-tumorigenic CAFs can support tumor progression, but they may not be indispensable for tumor growth and survival. In other words, tumor cells may not solely depend on the presence of CAFs. CAF-targeted therapy in combination with other chemotherapeutic drugs is likely to improve treatment outcomes.
Our study has used a transcriptome analysis to identify differentially expressed genes and non-coding RNAs between normal and cancer-associated fibroblasts on a human prostate model.
Materials and methods
Clinical specimen collection
All patient samples were collected from the Institute of Nephro-Urology (Department of Urology), Bengaluru. The study was approved by the Institutional Ethics committee of both the institutions and informed consent has been taken from all the participants. The identity of the participants has been kept anonymous. Samples were taken either by Transrectal Ultrasound scan (TRUS) or Transurethral resection of the prostate (TURP) methods. Classification of the samples as benign or malignant was done by pathologists as per standard criteria.
Culturing of fibroblasts
Surgical or biopsy specimens were rinsed thoroughly in sterile saline and transferred to transport media (RPMI 1640 (Gibco, Cat No: 23400-021) with 2X PenStrep (Gibco, Cat No: 15140122). Subsequently, these specimens were rinsed thoroughly with RPMI media containing antibiotics, minced into fine pieces, and transferred to culture flasks keeping sufficient distance between each piece for the cells to migrate out. Media was changed periodically. Once the fibroblasts migrated out of the tissues, cells were transferred to fresh flasks and cultured in RPMI supplemented with FBS.
RNA isolation
Total RNA was isolated from the cultured fibroblasts using a Qiagen RNeasy kit (Cat No: 74104) according to the manufacturer’s instructions. RNA was quantified on nanodrop (Thermo Scientific™ NanoDrop™). The quality of RNA samples was assessed by running them on 1% agarose gel.
RNA sequencing
RNA sequencing was outsourced to Wipro Life Science Labs, Bengaluru. Quality assessment was done using Agilent TapeStation and all samples had RIN > 9 (Supplemenatry file). Samples were further taken for library preparation and RNA sequencing using the Illumina platform (NextSeq 2000). (The raw data files for this data set is available on GEO, accession number GSE270705).
RNA sequencing analysis workflow
The quality assessment of the data was performed for base quality and contamination by sequencing artifacts. The adapters were trimmed and poor-quality sequences were filtered using Trim Galore. Trimmed sequence reads were mapped to reference genome (Assembly: hg38, GRCh38.p12 (GCA_000001405.27), Dec. 2017, Data Source: UCSC Genome Browser, Weblink:http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/analysisSet/hg38.analysisSet.fa.gz) with splice aware alignment tool STAR. R subread R package was used to get feature-specific expression counts. Low-count features across the samples were detected and removed using the NOISeq R package followed by expression count normalization with the TMM method (from the NOISeq R package). Differential expression analysis was performed with the NOISeq R package where the group information was used to define biological replicates. Genes/transcripts (mRNA and lincRNA) were considered differentially expressed when they showed at least a log2 fold change of 1.5 between normal and CAFs (Supplementary Fig. 1).
qRT-PCR analysis
2 µg RNA was converted to cDNA using Verso cDNA synthesis kit (Thermo Fisher Scientific Cat no: AB1453A). 20ng RNA equivalent cDNA was used for the PCR reactions. qRT-PCR was carried out using the SYBR FAST Universal 2XqPCR Master Mix, (Roche, Cat no: KK4601). Normalization was done using RPL35. The fold changes with respect to expression level in control samples was calculated by the ddCt method. The experiment was done on 3 control samples and 2 CAF samples and the average fold change with SD has been tabulated.
LINCRNA functional annotation
NPInter v5.0 (http://bigdata.ibp.ac.cn/npinter5/) [22, 23] is a database that provides collective information about the multidimensional interactions of ncRNAs (lincRNA, miRNA, circRNA, etc.) with protein, RNA, and DNA. This database contains information about RNA interactions based on literature mining and high-throughput sequencing data with functional annotation [22].
The list of differentially expressed lincRNAs from our experiment was fed into NPInter v5.0 database and segregated according to the interactors (proteins, mRNA, and ncRNA).
The miRNAs obtained from the lincRNA-miRNA (ncRNA) interaction (from NPInter v5.0 database) were further subjected to the miRDB database (https://mirdb.org/) [24] to predict its mRNA targets (Supplementary Fig. 2).
Results
Differential expression of genes between normal and cancer-associated fibroblasts
We have identified 818 genes and 17 long intergenic non-coding RNAs (lincRNAs) that exhibit differential expression between normal fibroblasts and CAFs with a minimum log2 fold of 1.5. Of these, 380 genes and 7 lincRNAs were found to be overexpressed (Table 1), while 438 genes and 10 lincRNAs were under-expressed (Table 2) in CAFs as compared to normal fibroblasts.
Table 1.
Sl No | Gene ID | Log2FC | Symbol |
---|---|---|---|
1 | ENSG00000184937 | 9.338678226 | WT1 |
2 | ENSG00000120093 | 9.066529369 | HOXB3 |
3 | ENSG00000182742 | 8.440665024 | HOXB4 |
4 | ENSG00000106483 | 7.457728693 | SFRP4 |
5 | ENSG00000183242 | 7.266975633 | WT1-AS |
6 | ENSG00000165507 | 6.8004577 | DEPP1 |
7 | ENSG00000163364 | 6.193836171 | LINC01116 |
8 | ENSG00000175879 | 5.293002219 | HOXD8 |
9 | ENSG00000156466 | 5.080737946 | GDF6 |
10 | ENSG00000169418 | 4.968358544 | NPR1 |
11 | ENSG00000188783 | 4.644111631 | PRELP |
12 | ENSG00000198774 | 4.609020395 | RASSF9 |
13 | ENSG00000131471 | 4.565470197 | AOC3 |
14 | ENSG00000106819 | 4.519034135 | ASPN |
15 | ENSG00000075275 | 4.434781935 | CELSR1 |
16 | ENSG00000196616 | 4.350248405 | ADH1B |
17 | ENSG00000146374 | 4.301235355 | RSPO3 |
18 | ENSG00000146038 | 4.29610124 | DCDC2 |
19 | ENSG00000112936 | 4.254281304 | C7 |
20 | ENSG00000244694 | 4.169584725 | PTCHD4 |
21 | ENSG00000135914 | 4.126018242 | HTR2B |
22 | ENSG00000136235 | 4.080788268 | GPNMB |
23 | ENSG00000005471 | 3.893427681 | ABCB4 |
24 | ENSG00000177363 | 3.886142424 | LRRN4CL |
25 | ENSG00000086289 | 3.817819494 | EPDR1 |
26 | ENSG00000225684 | 3.807004332 | FAM225B |
27 | ENSG00000146938 | 3.720873944 | NLGN4X |
28 | ENSG00000110076 | 3.67301846 | NRXN2 |
29 | ENSG00000205221 | 3.625265335 | VIT |
30 | ENSG00000139910 | 3.612874671 | NOVA1 |
31 | ENSG00000137507 | 3.593886089 | LRRC32 |
32 | ENSG00000167306 | 3.581243704 | MYO5B |
33 | ENSG00000164161 | 3.576706765 | HHIP |
34 | ENSG00000164318 | 3.569735487 | EGFLAM |
35 | ENSG00000231528 | 3.492219584 | FAM225A |
36 | ENSG00000172264 | 3.490561901 | MACROD2 |
37 | ENSG00000180777 | 3.487256802 | ANKRD30B |
38 | ENSG00000138449 | 3.435323115 | SLC40A1 |
39 | ENSG00000131370 | 3.430490091 | SH3BP5 |
40 | ENSG00000173917 | 3.379890194 | HOXB2 |
41 | ENSG00000100302 | 3.374791795 | RASD2 |
42 | ENSG00000157214 | 3.373774391 | STEAP2 |
43 | ENSG00000260552 | 3.332515698 | COSMOC |
44 | ENSG00000248144 | 3.324284207 | ADH1C |
45 | ENSG00000072041 | 3.304587859 | SLC6A15 |
46 | ENSG00000138135 | 3.286841035 | CH25H |
47 | ENSG00000183682 | 3.268320942 | BMP8A |
48 | ENSG00000096696 | 3.242335703 | DSP |
49 | ENSG00000145242 | 3.231906415 | EPHA5 |
50 | ENSG00000078081 | 3.222529548 | LAMP3 |
51 | ENSG00000101680 | 3.21461969 | LAMA1 |
52 | ENSG00000166923 | 3.181087552 | GREM1 |
53 | ENSG00000171119 | 3.178048407 | NRTN |
54 | ENSG00000115252 | 3.1689023 | PDE1A |
55 | ENSG00000129467 | 3.164502988 | ADCY4 |
56 | ENSG00000145819 | 3.148256737 | ARHGAP26 |
57 | ENSG00000106809 | 3.147514635 | OGN |
58 | ENSG00000055732 | 3.103481133 | MCOLN3 |
59 | ENSG00000135643 | 3.087942208 | KCNMB4 |
60 | ENSG00000065320 | 3.080524368 | NTN1 |
61 | ENSG00000070193 | 3.076239219 | FGF10 |
62 | ENSG00000267414 | 3.070509607 | SETBP1-DT |
63 | ENSG00000074370 | 3.024375298 | ATP2A3 |
64 | ENSG00000152217 | 3.010426863 | SETBP1 |
65 | ENSG00000179954 | 2.984447115 | SSC5D |
66 | ENSG00000016082 | 2.979521208 | ISL1 |
67 | ENSG00000136040 | 2.979012692 | PLXNC1 |
68 | ENSG00000235092 | 2.971718084 | ID2-AS1 |
69 | ENSG00000163794 | 2.951338436 | UCN |
70 | ENSG00000244242 | 2.945313304 | IFITM10 |
71 | ENSG00000112096 | 2.940026071 | SOD2 |
72 | ENSG00000121005 | 2.931365251 | CRISPLD1 |
73 | ENSG00000139364 | 2.918854199 | TMEM132B |
74 | ENSG00000164106 | 2.915361292 | SCRG1 |
75 | ENSG00000197971 | 2.87570475 | MBP |
76 | ENSG00000231007 | 2.875103234 | CDC20P1 |
77 | ENSG00000106624 | 2.854540897 | AEBP1 |
78 | ENSG00000101115 | 2.849787273 | SALL4 |
79 | ENSG00000006210 | 2.847602797 | CX3CL1 |
80 | ENSG00000168427 | 2.808700829 | KLHL30 |
81 | ENSG00000182463 | 2.807335587 | TSHZ2 |
82 | ENSG00000189409 | 2.805577626 | MMP23B |
83 | ENSG00000117122 | 2.802217897 | MFAP2 |
84 | ENSG00000165959 | 2.758592315 | CLMN |
85 | ENSG00000131634 | 2.75181617 | TMEM204 |
86 | ENSG00000168477 | 2.742397705 | TNXB |
87 | ENSG00000248290 | 2.724225106 | TNXA |
88 | ENSG00000215914 | 2.718914487 | MMP23A |
89 | ENSG00000186868 | 2.711375311 | MAPT |
90 | ENSG00000170345 | 2.692482283 | FOS |
91 | ENSG00000154258 | 2.690792336 | ABCA9 |
92 | ENSG00000180481 | 2.678866617 | GLIPR1L2 |
93 | ENSG00000133083 | 2.661308127 | DCLK1 |
94 | ENSG00000082482 | 2.659723066 | KCNK2 |
95 | ENSG00000048052 | 2.658813636 | HDAC9 |
96 | ENSG00000162551 | 2.644404231 | ALPL |
97 | ENSG00000173805 | 2.640886128 | HAP1 |
98 | ENSG00000189056 | 2.639778484 | RELN |
99 | ENSG00000253661 | 2.63880641 | ZFHX4-AS1 |
100 | ENSG00000171791 | 2.610282773 | BCL2 |
101 | ENSG00000144837 | 2.601860367 | PLA1A |
102 | ENSG00000169184 | 2.599944099 | MN1 |
103 | ENSG00000089820 | 2.574305154 | ARHGAP4 |
104 | ENSG00000181634 | 2.56427507 | TNFSF15 |
105 | ENSG00000178015 | 2.560445983 | GPR150 |
106 | ENSG00000167216 | 2.537221974 | KATNAL2 |
107 | ENSG00000028277 | 2.532129932 | POU2F2 |
108 | ENSG00000178081 | 2.529858375 | ULK4P3 |
109 | ENSG00000004776 | 2.527119447 | HSPB6 |
110 | ENSG00000116675 | 2.523980391 | DNAJC6 |
111 | ENSG00000156804 | 2.52126043 | FBXO32 |
112 | ENSG00000166664 | 2.502047488 | CHRFAM7A |
113 | ENSG00000184292 | 2.4903466 | TACSTD2 |
114 | ENSG00000137942 | 2.486706943 | FNBP1L |
115 | ENSG00000163132 | 2.461845915 | MSX1 |
116 | ENSG00000230148 | 2.455525439 | HOXB-AS1 |
117 | ENSG00000079931 | 2.449156028 | MOXD1 |
118 | ENSG00000187479 | 2.449071496 | C11orf96 |
119 | ENSG00000172348 | 2.448876698 | RCAN2 |
120 | ENSG00000092929 | 2.445627941 | UNC13D |
121 | ENSG00000186340 | 2.420950706 | THBS2 |
122 | ENSG00000185567 | 2.416942281 | AHNAK2 |
123 | ENSG00000143387 | 2.414727514 | CTSK |
124 | ENSG00000165124 | 2.407244712 | SVEP1 |
125 | ENSG00000182379 | 2.402168936 | NXPH4 |
126 | ENSG00000123700 | 2.399277025 | KCNJ2 |
127 | ENSG00000268883 | 2.391696562 | PNMA6B |
128 | ENSG00000135929 | 2.390048724 | CYP27A1 |
129 | ENSG00000166592 | 2.388259231 | RRAD |
130 | ENSG00000180155 | 2.384488858 | LYNX1 |
131 | ENSG00000099960 | 2.384307936 | SLC7A4 |
132 | ENSG00000160013 | 2.37946615 | PTGIR |
133 | ENSG00000152049 | 2.371373176 | KCNE4 |
134 | ENSG00000117586 | 2.367762203 | TNFSF4 |
135 | ENSG00000188112 | 2.366857463 | C6orf132 |
136 | ENSG00000125246 | 2.366405093 | CLYBL |
137 | ENSG00000170873 | 2.365388741 | MTSS1 |
138 | ENSG00000185250 | 2.364877963 | PPIL6 |
139 | ENSG00000184985 | 2.360497315 | SORCS2 |
140 | ENSG00000053524 | 2.358290643 | MCF2L2 |
141 | ENSG00000064655 | 2.356374576 | EYA2 |
142 | ENSG00000166341 | 2.353827343 | DCHS1 |
143 | ENSG00000139117 | 2.331754284 | CPNE8 |
144 | ENSG00000164647 | 2.331093887 | STEAP1 |
145 | ENSG00000121898 | 2.329546823 | CPXM2 |
146 | ENSG00000184349 | 2.326907614 | EFNA5 |
147 | ENSG00000155629 | 2.319366832 | PIK3AP1 |
148 | ENSG00000153094 | 2.313590878 | BCL2L11 |
149 | ENSG00000073849 | 2.312193881 | ST6GAL1 |
150 | ENSG00000145911 | 2.307535495 | N4BP3 |
151 | ENSG00000179104 | 2.306651777 | TMTC2 |
152 | ENSG00000133110 | 2.304364639 | POSTN |
153 | ENSG00000011201 | 2.300441534 | ANOS1 |
154 | ENSG00000027075 | 2.299717173 | PRKCH |
155 | ENSG00000085563 | 2.297166128 | ABCB1 |
156 | ENSG00000150907 | 2.296836959 | FOXO1 |
157 | ENSG00000138028 | 2.295512338 | CGREF1 |
158 | ENSG00000122877 | 2.289440613 | EGR2 |
159 | ENSG00000182175 | 2.28805904 | RGMA |
160 | ENSG00000270441 | 2.286773813 | LAMB2P1 |
161 | ENSG00000116396 | 2.282150715 | KCNC4 |
162 | ENSG00000136960 | 2.266626397 | ENPP2 |
163 | ENSG00000248587 | 2.262386263 | GDNF-AS1 |
164 | ENSG00000185345 | 2.258116067 | PRKN |
165 | ENSG00000148426 | 2.256779282 | PROSER2 |
166 | ENSG00000061918 | 2.247439143 | GUCY1B1 |
167 | ENSG00000092068 | 2.24098848 | SLC7A8 |
168 | ENSG00000275395 | 2.234570285 | FCGBP |
169 | ENSG00000151490 | 2.20727056 | PTPRO |
170 | ENSG00000139597 | 2.207034399 | N4BP2L1 |
171 | ENSG00000247157 | 2.204595176 | LINC01252 |
172 | ENSG00000138646 | 2.203203888 | HERC5 |
173 | ENSG00000172403 | 2.201543978 | SYNPO2 |
174 | ENSG00000136404 | 2.191272623 | TM6SF1 |
175 | ENSG00000146555 | 2.18336527 | SDK1 |
176 | ENSG00000168621 | 2.178626681 | GDNF |
177 | ENSG00000105825 | 2.174426101 | TFPI2 |
178 | ENSG00000064309 | 2.174214004 | CDON |
179 | ENSG00000140945 | 2.169223331 | CDH13 |
180 | ENSG00000109610 | 2.157112704 | SOD3 |
181 | ENSG00000164742 | 2.156264764 | ADCY1 |
182 | ENSG00000141837 | 2.154368705 | CACNA1A |
183 | ENSG00000146950 | 2.149426889 | SHROOM2 |
184 | ENSG00000204967 | 2.149380077 | PCDHA4 |
185 | ENSG00000115457 | 2.148909168 | IGFBP2 |
186 | ENSG00000060718 | 2.147967361 | COL11A1 |
187 | ENSG00000175344 | 2.146649503 | CHRNA7 |
188 | ENSG00000121316 | 2.129055023 | PLBD1 |
189 | ENSG00000170775 | 2.127857405 | GPR37 |
190 | ENSG00000176723 | 2.122935457 | ZNF843 |
191 | ENSG00000132561 | 2.117237938 | MATN2 |
192 | ENSG00000132554 | 2.115887216 | RGS22 |
193 | ENSG00000223485 | 2.113157959 | LINC01615 |
194 | ENSG00000162817 | 2.110368888 | C1orf115 |
195 | ENSG00000088881 | 2.109274054 | EBF4 |
196 | ENSG00000188372 | 2.105592321 | ZP3 |
197 | ENSG00000074181 | 2.102490156 | NOTCH3 |
198 | ENSG00000235961 | 2.101952544 | PNMA6A |
199 | ENSG00000167992 | 2.093637143 | VWCE |
200 | ENSG00000138650 | 2.089573305 | PCDH10 |
201 | ENSG00000138759 | 2.085680757 | FRAS1 |
202 | ENSG00000197461 | 2.081122778 | PDGFA |
203 | ENSG00000266714 | 2.075813496 | MYO15B |
204 | ENSG00000238103 | 2.074829611 | RPL9P7 |
205 | ENSG00000077157 | 2.074613986 | PPP1R12B |
206 | ENSG00000102032 | 2.07383953 | RENBP |
207 | ENSG00000228903 | 2.069376405 | RASA4CP |
208 | ENSG00000251396 | 2.068860492 | LINC01301 |
209 | ENSG00000151623 | 2.067577773 | NR3C2 |
210 | ENSG00000125510 | 2.053409396 | OPRL1 |
211 | ENSG00000245248 | 2.051615405 | USP2-AS1 |
212 | ENSG00000211445 | 2.051018294 | GPX3 |
213 | ENSG00000251141 | 2.046164026 | MRPS30-DT |
214 | ENSG00000267365 | 2.045033739 | KCNJ2-AS1 |
215 | ENSG00000228221 | 2.04070205 | LINC00578 |
216 | ENSG00000203867 | 2.032344927 | RBM20 |
217 | ENSG00000174945 | 2.020272513 | AMZ1 |
218 | ENSG00000115604 | 2.009952757 | IL18R1 |
219 | ENSG00000135604 | 2.00924409 | STX11 |
220 | ENSG00000161835 | 1.989514328 | TAMALIN |
221 | ENSG00000138678 | 1.980588605 | GPAT3 |
222 | ENSG00000099953 | 1.97665952 | MMP11 |
223 | ENSG00000136237 | 1.966980838 | RAPGEF5 |
224 | ENSG00000247317 | 1.961468975 | LY6E-DT |
225 | ENSG00000091137 | 1.961199971 | SLC26A4 |
226 | ENSG00000133106 | 1.955593857 | EPSTI1 |
227 | ENSG00000067606 | 1.951176918 | PRKCZ |
228 | ENSG00000188042 | 1.949712405 | ARL4C |
229 | ENSG00000121769 | 1.946715273 | FABP3 |
230 | ENSG00000053328 | 1.946150549 | METTL24 |
231 | ENSG00000119227 | 1.944119988 | PIGZ |
232 | ENSG00000242265 | 1.943038605 | PEG10 |
233 | ENSG00000158270 | 1.942012211 | COLEC12 |
234 | ENSG00000090339 | 1.939652022 | ICAM1 |
235 | ENSG00000120051 | 1.937608095 | CFAP58 |
236 | ENSG00000186564 | 1.934041687 | FOXD2 |
237 | ENSG00000170667 | 1.931915044 | RASA4B |
238 | ENSG00000171812 | 1.928787106 | COL8A2 |
239 | ENSG00000171298 | 1.918638878 | GAA |
240 | ENSG00000136244 | 1.914540053 | IL6 |
241 | ENSG00000123689 | 1.914379557 | G0S2 |
242 | ENSG00000116183 | 1.910021948 | PAPPA2 |
243 | ENSG00000070159 | 1.909849322 | PTPN3 |
244 | ENSG00000177989 | 1.907647864 | ODF3B |
245 | ENSG00000105808 | 1.901189602 | RASA4 |
246 | ENSG00000143494 | 1.883805272 | VASH2 |
247 | ENSG00000124212 | 1.882029068 | PTGIS |
248 | ENSG00000017427 | 1.881716853 | IGF1 |
249 | ENSG00000126709 | 1.877126382 | IFI6 |
250 | ENSG00000054938 | 1.87640479 | CHRDL2 |
251 | ENSG00000160781 | 1.876267747 | PAQR6 |
252 | ENSG00000185522 | 1.873518829 | LMNTD2 |
253 | ENSG00000184489 | 1.87301321 | PTP4A3 |
254 | ENSG00000164440 | 1.87150095 | TXLNB |
255 | ENSG00000196220 | 1.870403189 | SRGAP3 |
256 | ENSG00000236609 | 1.86738356 | ZNF853 |
257 | ENSG00000124107 | 1.860586158 | SLPI |
258 | ENSG00000213397 | 1.860217516 | HAUS7 |
259 | ENSG00000230453 | 1.859718833 | ANKRD18B |
260 | ENSG00000111058 | 1.85627795 | ACSS3 |
261 | ENSG00000111728 | 1.854599204 | ST8SIA1 |
262 | ENSG00000167191 | 1.851559449 | GPRC5B |
263 | ENSG00000154262 | 1.838953254 | ABCA6 |
264 | ENSG00000236404 | 1.838660652 | VLDLR-AS1 |
265 | ENSG00000205464 | 1.83481979 | ATP6AP1L |
266 | ENSG00000173890 | 1.833899338 | GPR160 |
267 | ENSG00000163393 | 1.831146569 | SLC22A15 |
268 | ENSG00000083067 | 1.830961882 | TRPM3 |
269 | ENSG00000183160 | 1.826191137 | TMEM119 |
270 | ENSG00000152518 | 1.825645378 | ZFP36L2 |
271 | ENSG00000151322 | 1.824665719 | NPAS3 |
272 | ENSG00000087076 | 1.823705208 | HSD17B14 |
273 | ENSG00000198947 | 1.818442888 | DMD |
274 | ENSG00000103485 | 1.818412324 | QPRT |
275 | ENSG00000079337 | 1.817533512 | RAPGEF3 |
276 | ENSG00000261087 | 1.817317143 | ZNNT1 |
277 | ENSG00000137809 | 1.814823464 | ITGA11 |
278 | ENSG00000242759 | 1.812015961 | LINC00882 |
279 | ENSG00000158321 | 1.784811351 | AUTS2 |
280 | ENSG00000104856 | 1.780951678 | RELB |
281 | ENSG00000167994 | 1.778158789 | RAB3IL1 |
282 | ENSG00000166482 | 1.777896815 | MFAP4 |
283 | ENSG00000165379 | 1.769235888 | LRFN5 |
284 | ENSG00000138829 | 1.768396718 | FBN2 |
285 | ENSG00000091536 | 1.763382884 | MYO15A |
286 | ENSG00000261247 | 1.760534831 | GOLGA8T |
287 | ENSG00000159871 | 1.753151378 | LYPD5 |
288 | ENSG00000258057 | 1.750339825 | BCDIN3D-AS1 |
289 | ENSG00000141337 | 1.749006586 | ARSG |
290 | ENSG00000103742 | 1.745113925 | IGDCC4 |
291 | ENSG00000145675 | 1.74040115 | PIK3R1 |
292 | ENSG00000122176 | 1.737285546 | FMOD |
293 | ENSG00000254109 | 1.735471082 | RBPMS-AS1 |
294 | ENSG00000204991 | 1.726456592 | SPIRE2 |
295 | ENSG00000112149 | 1.723550217 | CD83 |
296 | ENSG00000137573 | 1.718910062 | SULF1 |
297 | ENSG00000102385 | 1.71638324 | DRP2 |
298 | ENSG00000123358 | 1.711240172 | NR4A1 |
299 | ENSG00000136231 | 1.701661804 | IGF2BP3 |
300 | ENSG00000196189 | 1.698833406 | SEMA4A |
301 | ENSG00000235169 | 1.698395404 | SMIM1 |
302 | ENSG00000129951 | 1.697726994 | PLPPR3 |
303 | ENSG00000121577 | 1.696736786 | POPDC2 |
304 | ENSG00000136048 | 1.696574651 | DRAM1 |
305 | ENSG00000155093 | 1.695863189 | PTPRN2 |
306 | ENSG00000146021 | 1.690145464 | KLHL3 |
307 | ENSG00000138606 | 1.685675264 | SHF |
308 | ENSG00000163071 | 1.683331706 | SPATA18 |
309 | ENSG00000182667 | 1.681535708 | NTM |
310 | ENSG00000175147 | 1.675397396 | TMEM51-AS1 |
311 | ENSG00000131094 | 1.671463514 | C1QL1 |
312 | ENSG00000185950 | 1.671407837 | IRS2 |
313 | ENSG00000147813 | 1.667824825 | NAPRT |
314 | ENSG00000248932 | 1.66420747 | COPB2-DT |
315 | ENSG00000214530 | 1.663364842 | STARD10 |
316 | ENSG00000185551 | 1.661064554 | NR2F2 |
317 | ENSG00000101447 | 1.657930905 | FAM83D |
318 | ENSG00000010810 | 1.655154361 | FYN |
319 | ENSG00000188613 | 1.654322702 | NANOS1 |
320 | ENSG00000266405 | 1.652390581 | CBX3P2 |
321 | ENSG00000135709 | 1.651900323 | KIAA0513 |
322 | ENSG00000105696 | 1.648631374 | TMEM59L |
323 | ENSG00000130203 | 1.645917049 | APOE |
324 | ENSG00000196843 | 1.633503171 | ARID5A |
325 | ENSG00000105227 | 1.63140042 | PRX |
326 | ENSG00000149131 | 1.627990138 | SERPING1 |
327 | ENSG00000257556 | 1.627356063 | LINC02298 |
328 | ENSG00000154721 | 1.625716346 | JAM2 |
329 | ENSG00000099822 | 1.623752672 | HCN2 |
330 | ENSG00000184500 | 1.62244634 | PROS1 |
331 | ENSG00000196972 | 1.618142282 | SMIM10L2B |
332 | ENSG00000151468 | 1.61503098 | CCDC3 |
333 | ENSG00000105464 | 1.614595823 | GRIN2D |
334 | ENSG00000231160 | 1.612536565 | KLF3-AS1 |
335 | ENSG00000137103 | 1.607356621 | TMEM8B |
336 | ENSG00000152804 | 1.606407263 | HHEX |
337 | ENSG00000177406 | 1.604754837 | NINJ2-AS1 |
338 | ENSG00000137193 | 1.596972091 | PIM1 |
339 | ENSG00000064763 | 1.59577321 | FAR2 |
340 | ENSG00000167617 | 1.593511925 | CDC42EP5 |
341 | ENSG00000255052 | 1.592666461 | FAM66D |
342 | ENSG00000228960 | 1.59238393 | OR2A9P |
343 | ENSG00000162944 | 1.587186115 | RFTN2 |
344 | ENSG00000253537 | 1.584488009 | PCDHGA7 |
345 | ENSG00000184160 | 1.583566455 | ADRA2C |
346 | ENSG00000227825 | 1.582312593 | SLC9A7P1 |
347 | ENSG00000130304 | 1.576658392 | SLC27A1 |
348 | ENSG00000182575 | 1.573523412 | NXPH3 |
349 | ENSG00000111961 | 1.571843412 | SASH1 |
350 | ENSG00000105327 | 1.571154429 | BBC3 |
351 | ENSG00000168405 | 1.570501551 | CMAHP |
352 | ENSG00000091986 | 1.567946901 | CCDC80 |
353 | ENSG00000115257 | 1.567912566 | PCSK4 |
354 | ENSG00000130513 | 1.565481009 | GDF15 |
355 | ENSG00000165171 | 1.561243614 | METTL27 |
356 | ENSG00000105088 | 1.559271564 | OLFM2 |
357 | ENSG00000198885 | 1.55549775 | ITPRIPL1 |
358 | ENSG00000164542 | 1.547170796 | KIAA0895 |
359 | ENSG00000176658 | 1.545536167 | MYO1D |
360 | ENSG00000105792 | 1.542664406 | CFAP69 |
361 | ENSG00000164099 | 1.54213594 | PRSS12 |
362 | ENSG00000166387 | 1.540636661 | PPFIBP2 |
363 | ENSG00000114698 | 1.535920603 | PLSCR4 |
364 | ENSG00000205978 | 1.532307659 | NYNRIN |
365 | ENSG00000226278 | 1.530617518 | PSPHP1 |
366 | ENSG00000086991 | 1.528440753 | NOX4 |
367 | ENSG00000131831 | 1.526695735 | RAI2 |
368 | ENSG00000107562 | 1.52621975 | CXCL12 |
369 | ENSG00000141458 | 1.523071138 | NPC1 |
370 | ENSG00000172164 | 1.522391588 | SNTB1 |
371 | ENSG00000125965 | 1.521256956 | GDF5 |
372 | ENSG00000246985 | 1.520714773 | SOCS2-AS1 |
373 | ENSG00000147852 | 1.519022363 | VLDLR |
374 | ENSG00000171877 | 1.517043034 | FRMD5 |
375 | ENSG00000116661 | 1.51618235 | FBXO2 |
376 | ENSG00000068831 | 1.515474863 | RASGRP2 |
377 | ENSG00000142156 | 1.514396814 | COL6A1 |
378 | ENSG00000233297 | 1.514139138 | RASA4DP |
379 | ENSG00000064989 | 1.512822057 | CALCRL |
380 | ENSG00000182218 | 1.512646505 | HHIPL1 |
381 | ENSG00000198270 | 1.512176831 | TMEM116 |
382 | ENSG00000143382 | 1.508260028 | ADAMTSL4 |
383 | ENSG00000104883 | 1.507314695 | PEX11G |
384 | ENSG00000205309 | 1.507255711 | NT5M |
385 | ENSG00000077942 | 1.506829199 | FBLN1 |
386 | ENSG00000246174 | 1.502096816 | KCTD21-AS1 |
387 | ENSG00000173262 | 1.501298345 | SLC2A14 |
List of mRNAs and LINCRNAs overexpressed in cancer associated fibroblasts as compared to normal fibroblasts. The list shows the GeneID, relative fold change values (Log2FC), and gene symbol
Table 2.
Sl No | Gene ID | Log2FC | Symbol |
---|---|---|---|
1 | ENSG00000164093 | -6.244899052 | PITX2 |
2 | ENSG00000110693 | -5.381564985 | SOX6 |
3 | ENSG00000171246 | -4.942383728 | NPTX1 |
4 | ENSG00000206432 | -4.86079173 | TMEM200C |
5 | ENSG00000241213 | -4.692994122 | LINC02024 |
6 | ENSG00000189057 | -4.682640569 | FAM111B |
7 | ENSG00000186493 | -4.5887501 | C5orf38 |
8 | ENSG00000170561 | -4.489265562 | IRX2 |
9 | ENSG00000065328 | -4.416019329 | MCM10 |
10 | ENSG00000213412 | -4.299519526 | HNRNPA1P33 |
11 | ENSG00000277775 | -4.280564426 | H3C7 |
12 | ENSG00000102755 | -4.232129614 | FLT1 |
13 | ENSG00000171848 | -4.211927711 | RRM2 |
14 | ENSG00000117525 | -4.152266428 | F3 |
15 | ENSG00000129173 | -4.071649074 | E2F8 |
16 | ENSG00000093009 | -3.993665744 | CDC45 |
17 | ENSG00000111816 | -3.972942656 | FRK |
18 | ENSG00000148773 | -3.972536202 | MKI67 |
19 | ENSG00000174371 | -3.960698368 | EXO1 |
20 | ENSG00000109805 | -3.956700161 | NCAPG |
21 | ENSG00000007968 | -3.919560667 | E2F2 |
22 | ENSG00000176049 | -3.896811197 | JAKMIP2 |
23 | ENSG00000109272 | -3.8826734 | PF4V1 |
24 | ENSG00000169607 | -3.856035805 | CKAP2L |
25 | ENSG00000072571 | -3.853814872 | HMMR |
26 | ENSG00000151150 | -3.845533978 | ANK3 |
27 | ENSG00000131153 | -3.815504744 | GINS2 |
28 | ENSG00000137812 | -3.757294903 | KNL1 |
29 | ENSG00000122952 | -3.742224789 | ZWINT |
30 | ENSG00000166803 | -3.696740654 | PCLAF |
31 | ENSG00000286522 | -3.665033009 | H3C2 |
32 | ENSG00000203811 | -3.649365262 | H3C14 |
33 | ENSG00000203852 | -3.645437574 | H3C15 |
34 | ENSG00000092853 | -3.613728714 | CLSPN |
35 | ENSG00000112984 | -3.590191849 | KIF20A |
36 | ENSG00000171241 | -3.583589781 | SHCBP1 |
37 | ENSG00000121152 | -3.583173772 | NCAPH |
38 | ENSG00000143476 | -3.558596552 | DTL |
39 | ENSG00000152936 | -3.557494062 | LMNTD1 |
40 | ENSG00000165244 | -3.557493273 | ZNF367 |
41 | ENSG00000165490 | -3.538556887 | DDIAS |
42 | ENSG00000237649 | -3.53147714 | KIFC1 |
43 | ENSG00000278048 | -3.530960644 | U2 |
44 | ENSG00000158402 | -3.511625284 | CDC25C |
45 | ENSG00000105011 | -3.506471129 | ASF1B |
46 | ENSG00000140534 | -3.501930836 | TICRR |
47 | ENSG00000138180 | -3.497178172 | CEP55 |
48 | ENSG00000134690 | -3.487940972 | CDCA8 |
49 | ENSG00000118193 | -3.487807903 | KIF14 |
50 | ENSG00000163638 | -3.463794075 | ADAMTS9 |
51 | ENSG00000117724 | -3.460261143 | CENPF |
52 | ENSG00000183598 | -3.4355466 | H3C13 |
53 | ENSG00000075218 | -3.43277683 | GTSE1 |
54 | ENSG00000166851 | -3.413367724 | PLK1 |
55 | ENSG00000123485 | -3.395070088 | HJURP |
56 | ENSG00000011426 | -3.392069201 | ANLN |
57 | ENSG00000090889 | -3.389812639 | KIF4A |
58 | ENSG00000085840 | -3.38031696 | ORC1 |
59 | ENSG00000163808 | -3.374288656 | KIF15 |
60 | ENSG00000138185 | -3.373426081 | ENTPD1 |
61 | ENSG00000142945 | -3.330213652 | KIF2C |
62 | ENSG00000238297 | -3.323221421 | U3 |
63 | ENSG00000068078 | -3.315141798 | FGFR3 |
64 | ENSG00000117399 | -3.31378088 | CDC20 |
65 | ENSG00000112742 | -3.310189708 | TTK |
66 | ENSG00000170312 | -3.308358731 | CDK1 |
67 | ENSG00000171320 | -3.306520946 | ESCO2 |
68 | ENSG00000146670 | -3.297527548 | CDCA5 |
69 | ENSG00000145386 | -3.282458069 | CCNA2 |
70 | ENSG00000166670 | -3.278837829 | MMP10 |
71 | ENSG00000197565 | -3.264304177 | COL4A6 |
72 | ENSG00000089685 | -3.2634763 | BIRC5 |
73 | ENSG00000168078 | -3.251635481 | PBK |
74 | ENSG00000183856 | -3.236451775 | IQGAP3 |
75 | ENSG00000145681 | -3.235820469 | HAPLN1 |
76 | ENSG00000109072 | -3.229022684 | VTN |
77 | ENSG00000273703 | -3.228440353 | H2BC14 |
78 | ENSG00000066279 | -3.224990555 | ASPM |
79 | ENSG00000184357 | -3.215486063 | H1-5 |
80 | ENSG00000197299 | -3.203543875 | BLM |
81 | ENSG00000100162 | -3.202097229 | CENPM |
82 | ENSG00000175305 | -3.179881376 | CCNE2 |
83 | ENSG00000075702 | -3.177596664 | WDR62 |
84 | ENSG00000011332 | -3.169273735 | DPF1 |
85 | ENSG00000196584 | -3.158286898 | XRCC2 |
86 | ENSG00000276368 | -3.147207462 | H2AC14 |
87 | ENSG00000134057 | -3.146004943 | CCNB1 |
88 | ENSG00000173320 | -3.143419433 | STOX2 |
89 | ENSG00000213967 | -3.137208731 | ZNF726 |
90 | ENSG00000094804 | -3.131644437 | CDC6 |
91 | ENSG00000228065 | -3.120855365 | LINC01515 |
92 | ENSG00000051341 | -3.118355075 | POLQ |
93 | ENSG00000128713 | -3.100005442 | HOXD11 |
94 | ENSG00000131747 | -3.09069934 | TOP2A |
95 | ENSG00000150551 | -3.082272486 | LYPD1 |
96 | ENSG00000184661 | -3.067972849 | CDCA2 |
97 | ENSG00000157456 | -3.063797851 | CCNB2 |
98 | ENSG00000281344 | -3.063460876 | HELLPAR |
99 | ENSG00000142731 | -3.063276977 | PLK4 |
100 | ENSG00000111665 | -3.060335172 | CDCA3 |
101 | ENSG00000087586 | -3.042747952 | AURKA |
102 | ENSG00000055813 | -3.03369872 | CCDC85A |
103 | ENSG00000164303 | -3.027403057 | ENPP6 |
104 | ENSG00000058866 | -3.027090567 | DGKG |
105 | ENSG00000275713 | -3.024102577 | H2BC9 |
106 | ENSG00000151725 | -3.020026322 | CENPU |
107 | ENSG00000196747 | -3.007422105 | H2AC13 |
108 | ENSG00000276043 | -3.005041466 | UHRF1 |
109 | ENSG00000166292 | -2.99208271 | TMEM100 |
110 | ENSG00000241322 | -2.984502753 | CDRT1 |
111 | ENSG00000111247 | -2.983780538 | RAD51AP1 |
112 | ENSG00000129195 | -2.977832945 | PIMREG |
113 | ENSG00000135451 | -2.970340448 | TROAP |
114 | ENSG00000120149 | -2.970262942 | MSX2 |
115 | ENSG00000164045 | -2.958067112 | CDC25A |
116 | ENSG00000076382 | -2.950383677 | SPAG5 |
117 | ENSG00000009694 | -2.94033935 | TENM1 |
118 | ENSG00000170160 | -2.934268013 | CCDC144A |
119 | ENSG00000287080 | -2.929684086 | H3C3 |
120 | ENSG00000169679 | -2.911200736 | BUB1 |
121 | ENSG00000227145 | -2.902745099 | IL21-AS1 |
122 | ENSG00000127423 | -2.89847034 | AUNIP |
123 | ENSG00000101412 | -2.892510405 | E2F1 |
124 | ENSG00000146410 | -2.866283497 | MTFR2 |
125 | ENSG00000154920 | -2.857083834 | EME1 |
126 | ENSG00000068489 | -2.845006407 | PRR11 |
127 | ENSG00000274641 | -2.842803264 | H2BC17 |
128 | ENSG00000183850 | -2.818220455 | ZNF730 |
129 | ENSG00000276410 | -2.814513008 | H2BC3 |
130 | ENSG00000261618 | -2.811451265 | LINC02605 |
131 | ENSG00000013810 | -2.805846132 | TACC3 |
132 | ENSG00000285294 | -2.799537368 | LINC00842 |
133 | ENSG00000100583 | -2.789283935 | SAMD15 |
134 | ENSG00000103522 | -2.776203635 | IL21R |
135 | ENSG00000163293 | -2.761734242 | NIPAL1 |
136 | ENSG00000138778 | -2.749900931 | CENPE |
137 | ENSG00000185008 | -2.739539975 | ROBO2 |
138 | ENSG00000164379 | -2.732731209 | FOXQ1 |
139 | ENSG00000167513 | -2.728991813 | CDT1 |
140 | ENSG00000137310 | -2.728793599 | TCF19 |
141 | ENSG00000144278 | -2.719986041 | GALNT13 |
142 | ENSG00000277224 | -2.717203571 | H2BC7 |
143 | ENSG00000111206 | -2.706187922 | FOXM1 |
144 | ENSG00000128656 | -2.701917579 | CHN1 |
145 | ENSG00000240809 | -2.637140463 | CAP1P1 |
146 | ENSG00000265190 | -2.628615159 | ANXA8 |
147 | ENSG00000102384 | -2.627033976 | CENPI |
148 | ENSG00000113368 | -2.621078132 | LMNB1 |
149 | ENSG00000276903 | -2.601525749 | H2AC16 |
150 | ENSG00000226953 | -2.595177536 | NCKAP5-AS2 |
151 | ENSG00000110900 | -2.590720608 | TSPAN11 |
152 | ENSG00000197385 | -2.580835912 | ZNF860 |
153 | ENSG00000180875 | -2.579367873 | GREM2 |
154 | ENSG00000122966 | -2.568012417 | CIT |
155 | ENSG00000138669 | -2.560074549 | PRKG2 |
156 | ENSG00000167900 | -2.558677147 | TK1 |
157 | ENSG00000138160 | -2.553197127 | KIF11 |
158 | ENSG00000134516 | -2.552103309 | DOCK2 |
159 | ENSG00000144554 | -2.55141711 | FANCD2 |
160 | ENSG00000275126 | -2.55107583 | H4C13 |
161 | ENSG00000160223 | -2.533341384 | ICOSLG |
162 | ENSG00000165084 | -2.532201212 | C8orf34 |
163 | ENSG00000222898 | -2.531267474 | RN7SKP97 |
164 | ENSG00000071539 | -2.527860312 | TRIP13 |
165 | ENSG00000162062 | -2.52734652 | TEDC2 |
166 | ENSG00000117600 | -2.513999972 | PLPPR4 |
167 | ENSG00000138182 | -2.505030881 | KIF20B |
168 | ENSG00000080986 | -2.502549503 | NDC80 |
169 | ENSG00000176208 | -2.49026074 | ATAD5 |
170 | ENSG00000165891 | -2.482123055 | E2F7 |
171 | ENSG00000186638 | -2.46529789 | KIF24 |
172 | ENSG00000088756 | -2.458646519 | ARHGAP28 |
173 | ENSG00000215784 | -2.451244682 | FAM72D |
174 | ENSG00000179750 | -2.433420816 | APOBEC3B |
175 | ENSG00000186310 | -2.432964986 | NAP1L3 |
176 | ENSG00000162383 | -2.431717139 | SLC1A7 |
177 | ENSG00000167600 | -2.424938393 | CYP2S1 |
178 | ENSG00000154839 | -2.424822921 | SKA1 |
179 | ENSG00000101003 | -2.422973689 | GINS1 |
180 | ENSG00000263513 | -2.413532558 | FAM72C |
181 | ENSG00000164109 | -2.410394716 | MAD2L1 |
182 | ENSG00000184374 | -2.406516904 | COLEC10 |
183 | ENSG00000088325 | -2.405096136 | TPX2 |
184 | ENSG00000275591 | -2.397269203 | XKR5 |
185 | ENSG00000264230 | -2.396476922 | ANXA8L1 |
186 | ENSG00000109674 | -2.383348062 | NEIL3 |
187 | ENSG00000124882 | -2.381427676 | EREG |
188 | ENSG00000123219 | -2.373815709 | CENPK |
189 | ENSG00000179219 | -2.371344708 | LINC00311 |
190 | ENSG00000121904 | -2.371312009 | CSMD2 |
191 | ENSG00000128052 | -2.369999586 | KDR |
192 | ENSG00000120594 | -2.368417063 | PLXDC2 |
193 | ENSG00000230300 | -2.366705146 | STARD13-IT1 |
194 | ENSG00000278588 | -2.366083657 | H2BC10 |
195 | ENSG00000188662 | -2.360625481 | H1-9P |
196 | ENSG00000187741 | -2.359151573 | FANCA |
197 | ENSG00000162654 | -2.358912627 | GBP4 |
198 | ENSG00000250853 | -2.34035427 | RNF138P1 |
199 | ENSG00000248228 | -2.324670799 | SLIT2-IT1 |
200 | ENSG00000135476 | -2.32046519 | ESPL1 |
201 | ENSG00000185697 | -2.316698718 | MYBL1 |
202 | ENSG00000171517 | -2.316431745 | LPAR3 |
203 | ENSG00000166451 | -2.308405325 | CENPN |
204 | ENSG00000184571 | -2.302100309 | PIWIL3 |
205 | ENSG00000179071 | -2.298141854 | CCDC89 |
206 | ENSG00000161888 | -2.296025131 | SPC24 |
207 | ENSG00000227911 | -2.269397065 | LINC02344 |
208 | ENSG00000117461 | -2.26639294 | PIK3R3 |
209 | ENSG00000187796 | -2.266276673 | CARD9 |
210 | ENSG00000164850 | -2.26346959 | GPER1 |
211 | ENSG00000100479 | -2.263305406 | POLE2 |
212 | ENSG00000236532 | -2.262159728 | LINC01695 |
213 | ENSG00000104368 | -2.261503355 | PLAT |
214 | ENSG00000112852 | -2.255468306 | PCDHB2 |
215 | ENSG00000137807 | -2.254277149 | KIF23 |
216 | ENSG00000144395 | -2.252773294 | CCDC150 |
217 | ENSG00000152056 | -2.244603112 | AP1S3 |
218 | ENSG00000183762 | -2.234862927 | KREMEN1 |
219 | ENSG00000064042 | -2.233728432 | LIMCH1 |
220 | ENSG00000100526 | -2.226118872 | CDKN3 |
221 | ENSG00000207597 | -2.215978624 | MIR490 |
222 | ENSG00000124635 | -2.214462467 | H2BC11 |
223 | ENSG00000196081 | -2.207624252 | ZNF724 |
224 | ENSG00000133119 | -2.204999878 | RFC3 |
225 | ENSG00000012048 | -2.203512532 | BRCA1 |
226 | ENSG00000278828 | -2.197741828 | H3C10 |
227 | ENSG00000160957 | -2.18914984 | RECQL4 |
228 | ENSG00000188610 | -2.174967519 | FAM72B |
229 | ENSG00000164087 | -2.157773664 | POC1A |
230 | ENSG00000147536 | -2.154684112 | GINS4 |
231 | ENSG00000236824 | -2.154204019 | BCYRN1 |
232 | ENSG00000073111 | -2.152293569 | MCM2 |
233 | ENSG00000107984 | -2.137106037 | DKK1 |
234 | ENSG00000272674 | -2.122271421 | PCDHB16 |
235 | ENSG00000163535 | -2.122050767 | SGO2 |
236 | ENSG00000187583 | -2.103701739 | PLEKHN1 |
237 | ENSG00000149968 | -2.090233185 | MMP3 |
238 | ENSG00000161800 | -2.088807861 | RACGAP1 |
239 | ENSG00000162063 | -2.083000456 | CCNF |
240 | ENSG00000216819 | -2.070905578 | TUBB2BP1 |
241 | ENSG00000234383 | -2.070115996 | CTBP2P8 |
242 | ENSG00000164611 | -2.062477973 | PTTG1 |
243 | ENSG00000169247 | -2.060263012 | SH3TC2 |
244 | ENSG00000163507 | -2.058945689 | CIP2A |
245 | ENSG00000183763 | -2.05764095 | TRAIP |
246 | ENSG00000137135 | -2.048019992 | ARHGEF39 |
247 | ENSG00000168496 | -2.03889776 | FEN1 |
248 | ENSG00000204176 | -2.034676644 | SYT15 |
249 | ENSG00000144476 | -2.028952615 | ACKR3 |
250 | ENSG00000139618 | -2.026828243 | BRCA2 |
251 | ENSG00000229989 | -2.016615466 | MIR181A1HG |
252 | ENSG00000248019 | -2.004491042 | FAM13A-AS1 |
253 | ENSG00000004139 | -2.003314083 | SARM1 |
254 | ENSG00000240891 | -2.003055186 | PLCXD2 |
255 | ENSG00000274290 | -1.998795168 | H2BC6 |
256 | ENSG00000198692 | -1.99256031 | EIF1AY |
257 | ENSG00000104147 | -1.988069738 | OIP5 |
258 | ENSG00000274997 | -1.984906449 | H2AC12 |
259 | ENSG00000137267 | -1.984524033 | TUBB2A |
260 | ENSG00000185760 | -1.982236088 | KCNQ5 |
261 | ENSG00000247498 | -1.981575492 | GPRC5D-AS1 |
262 | ENSG00000012504 | -1.980799777 | NR1H4 |
263 | ENSG00000285077 | -1.973914944 | ARHGAP11B |
264 | ENSG00000135480 | -1.973232661 | KRT7 |
265 | ENSG00000144596 | -1.96748205 | GRIP2 |
266 | ENSG00000196787 | -1.96740556 | H2AC11 |
267 | ENSG00000091651 | -1.96729841 | ORC6 |
268 | ENSG00000131002 | -1.967122587 | TXLNGY |
269 | ENSG00000145861 | -1.964234961 | C1QTNF2 |
270 | ENSG00000248909 | -1.962396435 | HMGB1P21 |
271 | ENSG00000163491 | -1.955677642 | NEK10 |
272 | ENSG00000196550 | -1.950290978 | FAM72A |
273 | ENSG00000136122 | -1.950251078 | BORA |
274 | ENSG00000002746 | -1.94138728 | HECW1 |
275 | ENSG00000106537 | -1.940201039 | TSPAN13 |
276 | ENSG00000112029 | -1.93283442 | FBXO5 |
277 | ENSG00000051180 | -1.932410512 | RAD51 |
278 | ENSG00000100297 | -1.92766499 | MCM5 |
279 | ENSG00000231672 | -1.922759998 | DIRC3 |
280 | ENSG00000281641 | -1.919964204 | SAMD12-AS1 |
281 | ENSG00000079616 | -1.912111909 | KIF22 |
282 | ENSG00000231566 | -1.910488729 | LINC02595 |
283 | ENSG00000131470 | -1.908189689 | PSMC3IP |
284 | ENSG00000123473 | -1.899760576 | STIL |
285 | ENSG00000171408 | -1.89840943 | PDE7B |
286 | ENSG00000170624 | -1.893532203 | SGCD |
287 | ENSG00000214391 | -1.88992187 | TUBAP2 |
288 | ENSG00000197275 | -1.883502038 | RAD54B |
289 | ENSG00000184988 | -1.882777859 | TMEM106A |
290 | ENSG00000111057 | -1.871847275 | KRT18 |
291 | ENSG00000160229 | -1.870820281 | ZNF66 |
292 | ENSG00000230417 | -1.864206963 | LINC00595 |
293 | ENSG00000277075 | -1.862953731 | H2AC8 |
294 | ENSG00000214826 | -1.86155004 | DDX12P |
295 | ENSG00000168675 | -1.859533634 | LDLRAD4 |
296 | ENSG00000136492 | -1.856840499 | BRIP1 |
297 | ENSG00000134007 | -1.855147363 | ADAM20 |
298 | ENSG00000168389 | -1.840331218 | MFSD2A |
299 | ENSG00000124575 | -1.839002223 | H1-3 |
300 | ENSG00000144583 | -1.838682115 | MARCHF4 |
301 | ENSG00000040275 | -1.83690946 | SPDL1 |
302 | ENSG00000258947 | -1.835374336 | TUBB3 |
303 | ENSG00000274210 | -1.834128746 | RNVU1-27 |
304 | ENSG00000164251 | -1.833060737 | F2RL1 |
305 | ENSG00000077152 | -1.828725777 | UBE2T |
306 | ENSG00000100739 | -1.828412728 | BDKRB1 |
307 | ENSG00000146006 | -1.826278356 | LRRTM2 |
308 | ENSG00000149548 | -1.825503232 | CCDC15 |
309 | ENSG00000157193 | -1.817142483 | LRP8 |
310 | ENSG00000173894 | -1.810408037 | CBX2 |
311 | ENSG00000137285 | -1.808867329 | TUBB2B |
312 | ENSG00000125637 | -1.808350388 | PSD4 |
313 | ENSG00000158769 | -1.806788653 | F11R |
314 | ENSG00000091409 | -1.797159103 | ITGA6 |
315 | ENSG00000122378 | -1.795265991 | PRXL2A |
316 | ENSG00000160949 | -1.795003337 | TONSL |
317 | ENSG00000259571 | -1.794121641 | BLID |
318 | ENSG00000013573 | -1.783801829 | DDX11 |
319 | ENSG00000067646 | -1.781317817 | ZFY |
320 | ENSG00000228485 | -1.77609442 | GRK5-IT1 |
321 | ENSG00000185130 | -1.775345169 | H2BC13 |
322 | ENSG00000135119 | -1.774610837 | RNFT2 |
323 | ENSG00000168961 | -1.770421979 | LGALS9 |
324 | ENSG00000167553 | -1.769893028 | TUBA1C |
325 | ENSG00000136108 | -1.767305561 | CKAP2 |
326 | ENSG00000275221 | -1.755721524 | H2AC15 |
327 | ENSG00000138772 | -1.755464656 | ANXA3 |
328 | ENSG00000257167 | -1.755365934 | TMPO-AS1 |
329 | ENSG00000119969 | -1.75451338 | HELLS |
330 | ENSG00000166396 | -1.748843248 | SERPINB7 |
331 | ENSG00000113070 | -1.7485423 | HBEGF |
332 | ENSG00000253669 | -1.74727492 | GASAL1 |
333 | ENSG00000203668 | -1.74710226 | CHML |
334 | ENSG00000121621 | -1.746743236 | KIF18A |
335 | ENSG00000143942 | -1.742138349 | CHAC2 |
336 | ENSG00000123416 | -1.741078217 | TUBA1B |
337 | ENSG00000178718 | -1.738739341 | RPP25 |
338 | ENSG00000135333 | -1.737844738 | EPHA7 |
339 | ENSG00000127586 | -1.737108616 | CHTF18 |
340 | ENSG00000182481 | -1.732656694 | KPNA2 |
341 | ENSG00000138092 | -1.727166693 | CENPO |
342 | ENSG00000135111 | -1.726943068 | TBX3 |
343 | ENSG00000003137 | -1.726195132 | CYP26B1 |
344 | ENSG00000050438 | -1.72618536 | SLC4A8 |
345 | ENSG00000104738 | -1.725725954 | MCM4 |
346 | ENSG00000224080 | -1.725379805 | UBE2FP1 |
347 | ENSG00000143248 | -1.724632404 | RGS5 |
348 | ENSG00000181938 | -1.72455685 | GINS3 |
349 | ENSG00000278463 | -1.724423695 | H2AC4 |
350 | ENSG00000273802 | -1.719926453 | H2BC8 |
351 | ENSG00000272610 | -1.718830162 | MAGI1-IT1 |
352 | ENSG00000276180 | -1.715080282 | H4C9 |
353 | ENSG00000080493 | -1.711929929 | SLC4A4 |
354 | ENSG00000146918 | -1.7111589 | NCAPG2 |
355 | ENSG00000125968 | -1.706827003 | ID1 |
356 | ENSG00000165304 | -1.706565279 | MELK |
357 | ENSG00000093072 | -1.705766917 | ADA2 |
358 | ENSG00000000460 | -1.704399842 | C1orf112 |
359 | ENSG00000203814 | -1.700700847 | H2BC18 |
360 | ENSG00000188229 | -1.700547122 | TUBB4B |
361 | ENSG00000182010 | -1.693661881 | RTKN2 |
362 | ENSG00000203772 | -1.693224918 | SPRN |
363 | ENSG00000228716 | -1.692307878 | DHFR |
364 | ENSG00000233695 | -1.683313672 | GAS6-AS1 |
365 | ENSG00000240583 | -1.681814582 | AQP1 |
366 | ENSG00000226887 | -1.680658527 | ERVMER34-1 |
367 | ENSG00000162981 | -1.680244743 | LRATD1 |
368 | ENSG00000155754 | -1.674128704 | C2CD6 |
369 | ENSG00000187764 | -1.671707352 | SEMA4D |
370 | ENSG00000144354 | -1.666069051 | CDCA7 |
371 | ENSG00000140525 | -1.665511953 | FANCI |
372 | ENSG00000198826 | -1.662405338 | ARHGAP11A |
373 | ENSG00000114374 | -1.66111163 | USP9Y |
374 | ENSG00000115687 | -1.660913272 | PASK |
375 | ENSG00000138641 | -1.65658816 | HERC3 |
376 | ENSG00000225479 | -1.650007239 | PLCB1-IT1 |
377 | ENSG00000171227 | -1.648342861 | TMEM37 |
378 | ENSG00000069011 | -1.646996033 | PITX1 |
379 | ENSG00000189423 | -1.645504091 | USP32P3 |
380 | ENSG00000106018 | -1.644722116 | VIPR2 |
381 | ENSG00000125885 | -1.643965568 | MCM8 |
382 | ENSG00000108106 | -1.641794507 | UBE2S |
383 | ENSG00000116741 | -1.640261558 | RGS2 |
384 | ENSG00000019582 | -1.637655701 | CD74 |
385 | ENSG00000128944 | -1.631589834 | KNSTRN |
386 | ENSG00000205085 | -1.629799155 | FAM71F2 |
387 | ENSG00000213551 | -1.629540955 | DNAJC9 |
388 | ENSG00000197646 | -1.628944055 | PDCD1LG2 |
389 | ENSG00000284770 | -1.6281093 | TBCE |
390 | ENSG00000175592 | -1.627413319 | FOSL1 |
391 | ENSG00000169255 | -1.626377071 | B3GALNT1 |
392 | ENSG00000256940 | -1.624938759 | PPP1R14B-AS1 |
393 | ENSG00000092470 | -1.624777727 | WDR76 |
394 | ENSG00000170396 | -1.62145823 | ZNF804A |
395 | ENSG00000157150 | -1.621389149 | TIMP4 |
396 | ENSG00000180998 | -1.620767241 | GPR137C |
397 | ENSG00000164342 | -1.61063564 | TLR3 |
398 | ENSG00000185347 | -1.608083729 | TEDC1 |
399 | ENSG00000185480 | -1.601104078 | PARPBP |
400 | ENSG00000128266 | -1.600461913 | GNAZ |
401 | ENSG00000138741 | -1.600042092 | TRPC3 |
402 | ENSG00000184524 | -1.599335578 | CEND1 |
403 | ENSG00000101945 | -1.599239127 | SUV39H1 |
404 | ENSG00000167670 | -1.597489348 | CHAF1A |
405 | ENSG00000120645 | -1.595159204 | IQSEC3 |
406 | ENSG00000274618 | -1.592827393 | H4C6 |
407 | ENSG00000166845 | -1.586194556 | C18orf54 |
408 | ENSG00000171951 | -1.584038434 | SCG2 |
409 | ENSG00000230397 | -1.577283347 | SPTLC1P1 |
410 | ENSG00000236397 | -1.570378467 | DDX11L2 |
411 | ENSG00000279094 | -1.568089067 | LINC01670 |
412 | ENSG00000161692 | -1.564584462 | DBF4B |
413 | ENSG00000154898 | -1.564062897 | CCDC144CP |
414 | ENSG00000113805 | -1.563519837 | CNTN3 |
415 | ENSG00000156968 | -1.563032371 | MPV17L |
416 | ENSG00000138658 | -1.561650456 | ZGRF1 |
417 | ENSG00000153956 | -1.559769347 | CACNA2D1 |
418 | ENSG00000072201 | -1.556754524 | LNX1 |
419 | ENSG00000184635 | -1.554031763 | ZNF93 |
420 | ENSG00000076706 | -1.550103307 | MCAM |
421 | ENSG00000253919 | -1.547621411 | THAP12P7 |
422 | ENSG00000117632 | -1.546633613 | STMN1 |
423 | ENSG00000169116 | -1.545012275 | PARM1 |
424 | ENSG00000134198 | -1.54426042 | TSPAN2 |
425 | ENSG00000145022 | -1.540861873 | TCTA |
426 | ENSG00000137872 | -1.538495127 | SEMA6D |
427 | ENSG00000151718 | -1.538300366 | WWC2 |
428 | ENSG00000248483 | -1.536573033 | POU5F2 |
429 | ENSG00000279078 | -1.53537251 | SND1-IT1 |
430 | ENSG00000275714 | -1.535151777 | H3C1 |
431 | ENSG00000054277 | -1.534516353 | OPN3 |
432 | ENSG00000228817 | -1.532377146 | BACH1-IT2 |
433 | ENSG00000106462 | -1.530310813 | EZH2 |
434 | ENSG00000152953 | -1.529327592 | STK32B |
435 | ENSG00000084710 | -1.526437542 | EFR3B |
436 | ENSG00000183878 | -1.526148211 | UTY |
437 | ENSG00000164619 | -1.522526665 | BMPER |
438 | ENSG00000145569 | -1.522204027 | OTULINL |
439 | ENSG00000124610 | -1.517949223 | H1-1 |
440 | ENSG00000196118 | -1.512333496 | CCDC189 |
441 | ENSG00000126215 | -1.510389055 | XRCC3 |
442 | ENSG00000233966 | -1.509072823 | UBE2SP1 |
443 | ENSG00000154127 | -1.508168812 | UBASH3B |
444 | ENSG00000176225 | -1.505171168 | RTTN |
445 | ENSG00000166446 | -1.504994005 | CDYL2 |
446 | ENSG00000270276 | -1.503539737 | H4C15 |
447 | ENSG00000128536 | -1.50202659 | CDHR3 |
448 | ENSG00000041353 | -1.501903367 | RAB27B |
List of mRNAs and LINCRNAs under-expressed in cancer-associated fibroblasts as compared to normal fibroblasts. The list shows the GeneID, relative fold change values (Log2FC), and gene symbol
qRT-PCR analysis of selected genes
Few genes from the differentially expressed gene list were selected for validation by qRT-PCR. Table 3 shows the list of genes that have been validated along with the fold changes. In the genes that have been validated, data from RNA-seq and qRT-PCR show the same pattern although fold changes are different.
Table 3.
Gene symbol | Log2FC (RNA-seq) | Average FC in qRT-PCR with S.D |
---|---|---|
SFRP4 | 7.457728693 | 35.45 ± 6.46 |
DEPP1 | 6.8004577 | 48.37 ± 3.134 |
GDF6 | 5.080737946 | 58.09 ± 4.793 |
NPR1 | 4.968358544 | 42.38 ± 4.161 |
LINC00842 | -2.799537368 | 0.023 ± 0.003 |
List of differentially expressed genes validated by qRT-PCR. The list shows the Gene symbol, fold change with respect to control in RNA-seq and fold change with respect to control in qRT-PCR
LINCRNA target prediction using npinter v5.0
LincRNA targets were predicted for differentially expressed lincRNAs in normal compared to CAFs using NP Inter V5.0. This analysis yielded 263 RNA-binding proteins (RBPs) (Table 4), 31 microRNAs (miRNAs), 1 non-coding (ncRNA) (Table 5) and 2 messenger RNA (mRNA) (Table 6) associated with a total of 14 lincRNAs. Also, there were 3 novel lincRNAs (LINC02344, LINC01670, and LINC02605) for which no data was found in the above database.
Table 4.
NON CODE/ ENSEMBL ID | LINCRNA | Interacting Component | UniProt ID | Type |
---|---|---|---|---|
NONHSAG010513 | LINC01252 | IGF2BP3 | O00425 | protein |
NONHSAG010513 | LINC01252 | SOX2 | P48431 | protein |
NONHSAG010513 | LINC01252 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG010513 | LINC01252 | AGO2 | Q9UKV8 | protein |
ENSG00000163364 | LINC01116 | ZC3HAV1 | Q7Z2W4 | protein |
ENSG00000163364 | LINC01116 | IGF2BP3 | O00425 | protein |
ENSG00000163364 | LINC01116 | CRNKL1 | Q9BZJ0 | protein |
ENSG00000163364 | LINC01116 | IGF2BP1 | Q9NZI8 | protein |
ENSG00000163364 | LINC01116 | DHX36 | Q9H2U1 | protein |
ENSG00000163364 | LINC01116 | EZH2 | A0A090N8E9 | protein |
ENSG00000223485 | LINC01615 | IGF2BP3 | O00425 | protein |
NONHSAG099482 | LINC01301 | A1CF | Q9NQ94 | protein |
NONHSAG099482 | LINC01301 | A1CF | Q9NQ94 | protein |
NONHSAG099482 | LINC01301 | TRIM25 | Q14258 | protein |
NONHSAG099482 | LINC01301 | ZC3HAV1 | Q7Z2W4 | protein |
NONHSAG099482 | LINC01301 | ZMAT3 | Q9HA38 | protein |
NONHSAG099482 | LINC01301 | ZMAT3 | Q9HA38 | protein |
NONHSAG099482 | LINC01301 | SP1 | P08047 | protein |
NONHSAG099482 | LINC01301 | IGF2BP3 | O00425 | protein |
NONHSAG099482 | LINC01301 | RBMX | P38159 | protein |
NONHSAG099482 | LINC01301 | SOX2 | P48431 | protein |
NONHSAG099482 | LINC01301 | U2AF1 | Q01081 | protein |
NONHSAG099482 | LINC01301 | ILF2 | Q12905 | protein |
NONHSAG099482 | LINC01301 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG099482 | LINC01301 | AGO2 | Q9UKV8 | protein |
NONHSAG099482 | LINC01301 | DHX36 | Q9H2U1 | protein |
NONHSAG099482 | LINC01301 | DHX36 | Q9H2U1 | protein |
NONHSAG016089 | LINC02298 | DMD | A0A075B6G3 | protein |
NONHSAG016089 | LINC02298 | TRIM25 | Q14258 | protein |
NONHSAG016089 | LINC02298 | IGF2BP3 | O00425 | protein |
NONHSAG016089 | LINC02298 | SOX2 | P48431 | protein |
NONHSAG016089 | LINC02298 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG016089 | LINC02298 | DHX36 | Q9H2U1 | protein |
NONHSAG035677 | LINC00882 | A1CF | Q9NQ94 | protein |
NONHSAG035677 | LINC00882 | A1CF | Q9NQ94 | protein |
NONHSAG035677 | LINC00882 | FUBP1 | Q96AE4 | protein |
NONHSAG035677 | LINC00882 | KHDRBS2 | Q5VWX1 | protein |
NONHSAG035677 | LINC00882 | PUS10 | Q3MIT2 | protein |
NONHSAG035677 | LINC00882 | TRIM25 | Q14258 | protein |
NONHSAG035677 | LINC00882 | ZC3HAV1 | Q7Z2W4 | protein |
NONHSAG035677 | LINC00882 | ZMAT3 | Q9HA38 | protein |
NONHSAG035677 | LINC00882 | ZMAT3 | Q9HA38 | protein |
NONHSAG035677 | LINC00882 | SP1 | P08047 | protein |
NONHSAG035677 | LINC00882 | WDR4 | P57081 | protein |
NONHSAG035677 | LINC00882 | SRSF1 | Q07955 | protein |
NONHSAG035677 | LINC00882 | IGF2BP3 | O00425 | protein |
NONHSAG035677 | LINC00882 | RBMX | P38159 | protein |
NONHSAG035677 | LINC00882 | SOX2 | P48431 | protein |
NONHSAG035677 | LINC00882 | HNRNPM | P52272 | protein |
NONHSAG035677 | LINC00882 | U2AF1 | Q01081 | protein |
NONHSAG035677 | LINC00882 | ILF2 | Q12905 | protein |
NONHSAG035677 | LINC00882 | ELAVL1 | Q15717 | protein |
NONHSAG035677 | LINC00882 | KHSRP | Q92945 | protein |
NONHSAG035677 | LINC00882 | CRNKL1 | Q9BZJ0 | protein |
NONHSAG035677 | LINC00882 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG035677 | LINC00882 | AGO2 | Q9UKV8 | protein |
NONHSAG035677 | LINC00882 | AGO2 | Q9UKV8 | protein |
NONHSAG035677 | LINC00882 | DHX36 | Q9H2U1 | protein |
NONHSAG035677 | LINC00882 | DHX36 | Q9H2U1 | protein |
NONHSAG035677 | LINC00882 | Rbfox1 | Q9NWB1 | protein |
ENSG00000228221 | LINC00578 | KHDRBS2 | Q5VWX1 | protein |
ENSG00000228221 | LINC00578 | PUS10 | Q3MIT2 | protein |
ENSG00000228221 | LINC00578 | TRIM25 | Q14258 | protein |
ENSG00000228221 | LINC00578 | USF2 | Q15853 | protein |
ENSG00000228221 | LINC00578 | ZC3HAV1 | Q7Z2W4 | protein |
ENSG00000228221 | LINC00578 | ZMAT3 | Q9HA38 | protein |
ENSG00000228221 | LINC00578 | ZMAT3 | Q9HA38 | protein |
ENSG00000228221 | LINC00578 | SP1 | P08047 | protein |
ENSG00000228221 | LINC00578 | CPSF1 | Q10570 | protein |
ENSG00000228221 | LINC00578 | IGF2BP3 | O00425 | protein |
ENSG00000228221 | LINC00578 | SOX2 | P48431 | protein |
ENSG00000228221 | LINC00578 | CPSF7 | Q8N684 | protein |
ENSG00000228221 | LINC00578 | CRNKL1 | Q9BZJ0 | protein |
ENSG00000228221 | LINC00578 | IGF2BP1 | Q9NZI8 | protein |
ENSG00000228221 | LINC00578 | AGO2 | Q9UKV8 | protein |
ENSG00000228221 | LINC00578 | AGO2 | Q9UKV8 | protein |
ENSG00000228221 | LINC00578 | AGO2 | Q9UKV8 | protein |
ENSG00000228221 | LINC00578 | PTBP1 | P26599 | protein |
ENSG00000228221 | LINC00578 | DHX36 | Q9H2U1 | protein |
ENSG00000228221 | LINC00578 | DHX36 | Q9H2U1 | protein |
NONHSAG036724 | LINC00578 | ADAR | P55265 | protein |
NONHSAG036724 | LINC00578 | WDR33 | Q9C0J8 | protein |
NONHSAG036724 | LINC00578 | TARBP2 | Q15633 | protein |
NONHSAG036724 | LINC00578 | RBM6 | P78332 | protein |
NONHSAG036724 | LINC00578 | RBM10 | P98175 | protein |
NONHSAG036724 | LINC00578 | UPF1 | Q92900 | protein |
NONHSAG036724 | LINC00578 | hnRNPA2B1 | O88569 | protein |
NONHSAG036724 | LINC00578 | FUS | P35637 | protein |
NONHSAG036727 | LINC00578 | HNRNPU | Q00839 | protein |
NONHSAG036727 | LINC00578 | DDX3X | O00571 | protein |
NONHSAG036727 | LINC00578 | EIF2C1 | Q9UL18 | protein |
NONHSAG036727 | LINC00578 | AGO2 | Q9UKV8 | protein |
NONHSAG036727 | LINC00578 | AGO3 | Q9H9G7 | protein |
NONHSAG036727 | LINC00578 | AGO4 | Q9HCK5 | protein |
NONHSAG036727 | LINC00578 | MBNL2 | Q5VZF2 | protein |
NONHSAG036727 | LINC00578 | MOV10 | P22626 | protein |
NONHSAG036727 | LINC00578 | SPPL3 | Q8TCT6 | protein |
NONHSAG036727 | LINC00578 | HNRPG | P38159 | protein |
NONHSAG036727 | LINC00578 | YTDC1 | Q96MU7 | protein |
NONHSAG036727 | LINC00578 | MBNL1 | Q9NR56 | protein |
NONHSAG036727 | LINC00578 | FBL | P22087 | protein |
NONHSAG036727 | LINC00578 | RNMT | O43148 | protein |
NONHSAG036727 | LINC00578 | DBHS | Q15233 | protein |
NONHSAG036727 | LINC00578 | PSF | P23246 | protein |
NONHSAG036727 | LINC00578 | HDAC9 | Q9UKV0 | protein |
NONHSAG036727 | LINC00578 | SMARCA4 | P51532 | protein |
NONHSAG036727 | LINC00578 | SSB | P05455 | protein |
NONHSAG036727 | LINC00578 | EWSR1 | Q01844 | protein |
ENSG00000231566 | LINC02595 | DCP1B | Q8IZD4 | protein |
ENSG00000231566 | LINC02595 | FUBP1 | Q96AE4 | protein |
ENSG00000231566 | LINC02595 | TRIM25 | Q14258 | protein |
ENSG00000231566 | LINC02595 | ZMAT3 | Q9HA38 | protein |
ENSG00000231566 | LINC02595 | DDX6 | P26196 | protein |
ENSG00000231566 | LINC02595 | AGO1 | Q9UL18 | protein |
ENSG00000231566 | LINC02595 | FUS | P35637 | protein |
ENSG00000231566 | LINC02595 | EWSR1 | Q01844 | protein |
ENSG00000231566 | LINC02595 | TIA1 | P31483 | protein |
ENSG00000231566 | LINC02595 | RBMX | P38159 | protein |
ENSG00000231566 | LINC02595 | ILF2 | Q12905 | protein |
ENSG00000231566 | LINC02595 | YTHDF2 | Q9Y5A9 | protein |
ENSG00000231566 | LINC02595 | FUBP3 | Q96I24 | protein |
ENSG00000231566 | LINC02595 | DHX36 | Q9H2U1 | protein |
ENSG00000231566 | LINC02595 | DHX36 | Q9H2U1 | protein |
ENSG00000231566 | LINC02595 | Rbfox1 | Q9NWB1 | protein |
NONHSAG006313 | LINC00595 | WDR33 | Q9C0J8 | protein |
NONHSAG006313 | LINC00595 | RTCB | Q9Y3I0 | protein |
NONHSAG006313 | LINC00595 | RBM6 | P78332 | protein |
NONHSAG006313 | LINC00595 | RBM10 | P98175 | protein |
NONHSAG006313 | LINC00595 | UPF1 | Q92900 | protein |
NONHSAG006313 | LINC00595 | hnRNPA2B1 | O88569 | protein |
NONHSAG006313 | LINC00595 | FUS | P35637 | protein |
NONHSAG060614 | LINC00595 | EIF2C1 | Q9UL18 | protein |
NONHSAG060614 | LINC00595 | AGO2 | Q9UKV8 | protein |
NONHSAG060614 | LINC00595 | AGO3 | Q9H9G7 | protein |
NONHSAG060614 | LINC00595 | AGO4 | Q9HCK5 | protein |
NONHSAG060614 | LINC00595 | MBNL2 | Q5VZF2 | protein |
NONHSAG060614 | LINC00595 | MOV10 | P22626 | protein |
NONHSAG060614 | LINC00595 | FBL | P22087 | protein |
NONHSAG060614 | LINC00595 | RBFOX2 | O43251 | protein |
NONHSAG060614 | LINC00595 | DBHS | Q15233 | protein |
NONHSAG060614 | LINC00595 | PSF | P23246 | protein |
NONHSAG060614 | LINC00595 | TRIM25 | Q14258 | protein |
NONHSAG060614 | LINC00595 | ZC3HAV1 | Q7Z2W4 | protein |
NONHSAG060614 | LINC00595 | ZMAT3 | Q9HA38 | protein |
NONHSAG060614 | LINC00595 | ZMAT3 | Q9HA38 | protein |
NONHSAG060614 | LINC00595 | SERBP1 | Q8NC51 | protein |
NONHSAG060614 | LINC00595 | IGF2BP3 | O00425 | protein |
NONHSAG060614 | LINC00595 | BRCA1 | P38398 | protein |
NONHSAG060614 | LINC00595 | SOX2 | P48431 | protein |
NONHSAG060614 | LINC00595 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG060614 | LINC00595 | AGO2 | Q9UKV8 | protein |
NONHSAG060614 | LINC00595 | AGO2 | Q9UKV8 | protein |
NONHSAG060614 | LINC00595 | AGO2 | Q9UKV8 | protein |
NONHSAG060614 | LINC00595 | DHX36 | Q9H2U1 | protein |
NONHSAG060614 | LINC00595 | DHX36 | Q9H2U1 | protein |
NONHSAG032603 | LINC01695 | ZMAT3 | Q9HA38 | protein |
NONHSAG032603 | LINC01695 | SP1 | P08047 | protein |
NONHSAG032603 | LINC01695 | IGF2BP3 | O00425 | protein |
NONHSAG032603 | LINC01695 | SOX2 | P48431 | protein |
NONHSAG032603 | LINC01695 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG032603 | LINC01695 | DHX36 | Q9H2U1 | protein |
NONHSAG032603 | LINC01695 | DHX36 | Q9H2U1 | protein |
NONHSAG020184 | LINC00311 | WDR33 | Q9C0J8 | protein |
NONHSAG020184 | LINC00311 | TARDBP | A0A087WZM1 | protein |
NONHSAG020184 | LINC00311 | HNRNPF | P52597 | protein |
NONHSAG020184 | LINC00311 | CSTF2 | P33240 | protein |
NONHSAG020184 | LINC00311 | RTCB | Q9Y3I0 | protein |
NONHSAG020184 | LINC00311 | TIAL1 | E7ETC0 | protein |
NONHSAG020184 | LINC00311 | TDP-43 | - | protein |
NONHSAG020184 | LINC00311 | TARBP2 | Q15633 | protein |
NONHSAG020184 | LINC00311 | RBM6 | P78332 | protein |
NONHSAG020184 | LINC00311 | RBM10 | P98175 | protein |
NONHSAG020184 | LINC00311 | MOV10 | P22626 | protein |
NONHSAG020184 | LINC00311 | UPF1 | Q92900 | protein |
NONHSAG020184 | LINC00311 | hnRNPA2B1 | O88569 | protein |
NONHSAG020184 | LINC00311 | FUS | P35637 | protein |
NONHSAG020184 | LINC00311 | CSTF2T | Q9H0L4 | protein |
NONHSAG020184 | LINC00311 | FAM120A | Q9NZB2 | protein |
NONHSAG020184 | LINC00311 | NCBP2 | P52298 | protein |
NONHSAG020184 | LINC00311 | TAF15 | Q92804 | protein |
NONHSAG020184 | LINC00311 | TIA1 | P31483 | protein |
NONHSAG020184 | LINC00311 | AGGF1 | Q8N302 | protein |
NONHSAG020184 | LINC00311 | EWSR1 | Q01844 | protein |
NONHSAG020184 | LINC00311 | DBHS | Q15233 | protein |
NONHSAG020184 | LINC00311 | SLTM | Q9NWH9 | protein |
NONHSAG020184 | LINC00311 | T2FA | P35269 | protein |
NONHSAG020184 | LINC00311 | EIF2C1 | Q9UL18 | protein |
NONHSAG020184 | LINC00311 | AGO2 | Q9UKV8 | protein |
NONHSAG020184 | LINC00311 | AGO3 | Q9H9G7 | protein |
NONHSAG020184 | LINC00311 | AGO4 | Q9HCK5 | protein |
NONHSAG020184 | LINC00311 | FBL | P22087 | protein |
NONHSAG020184 | LINC00311 | RBFOX2 | O43251 | protein |
NONHSAG020184 | LINC00311 | HNRNPA1 | P09651 | protein |
NONHSAG020184 | LINC00311 | U2AF2 | P26368 | protein |
NONHSAG020184 | LINC00311 | PSF | P23246 | protein |
NONHSAG020184 | LINC00311 | TRIM25 | Q14258 | protein |
NONHSAG020184 | LINC00311 | ZC3HAV1 | Q7Z2W4 | protein |
NONHSAG020184 | LINC00311 | IGF2BP3 | O00425 | protein |
NONHSAG020184 | LINC00311 | SOX2 | P48431 | protein |
NONHSAG020184 | LINC00311 | FTO | Q9C0B1 | protein |
NONHSAG020184 | LINC00311 | DHX36 | Q9H2U1 | protein |
ENSG00000241213 | LINC02024 | ZC3HAV1 | Q7Z2W4 | protein |
ENSG00000241213 | LINC02024 | SOX2 | P48431 | protein |
ENSG00000241213 | LINC02024 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG006038 | LINC01515 | A1CF | Q9NQ94 | protein |
NONHSAG006038 | LINC01515 | A1CF | Q9NQ94 | protein |
NONHSAG006038 | LINC01515 | AIMP1 | Q12904 | protein |
NONHSAG006038 | LINC01515 | EXOSC10 | Q01780 | protein |
NONHSAG006038 | LINC01515 | FUBP1 | Q96AE4 | protein |
NONHSAG006038 | LINC01515 | FUBP1 | Q96AE4 | protein |
NONHSAG006038 | LINC01515 | KHDRBS2 | Q5VWX1 | protein |
NONHSAG006038 | LINC01515 | KHDRBS2 | Q5VWX1 | protein |
NONHSAG006038 | LINC01515 | METTL1 | Q9UBP6 | protein |
NONHSAG006038 | LINC01515 | SCAF8 | Q9UPN6 | protein |
NONHSAG006038 | LINC01515 | TRIM25 | Q14258 | protein |
NONHSAG006038 | LINC01515 | USF2 | Q15853 | protein |
NONHSAG006038 | LINC01515 | ZMAT3 | Q9HA38 | protein |
NONHSAG006038 | LINC01515 | ZMAT3 | Q9HA38 | protein |
NONHSAG006038 | LINC01515 | SP1 | P08047 | protein |
NONHSAG006038 | LINC01515 | WDR4 | P57081 | protein |
NONHSAG006038 | LINC01515 | CPSF1 | Q10570 | protein |
NONHSAG006038 | LINC01515 | hnRNPD | Q14103 | protein |
NONHSAG006038 | LINC01515 | Rbfox2 | O43251 | protein |
NONHSAG006038 | LINC01515 | IGF2BP3 | O00425 | protein |
NONHSAG006038 | LINC01515 | SNRPA | P09012 | protein |
NONHSAG006038 | LINC01515 | RBMX | P38159 | protein |
NONHSAG006038 | LINC01515 | SOX2 | P48431 | protein |
NONHSAG006038 | LINC01515 | ELAVL1 | Q15717 | protein |
NONHSAG006038 | LINC01515 | CPSF7 | Q8N684 | protein |
NONHSAG006038 | LINC01515 | IGF2BP1 | Q9NZI8 | protein |
NONHSAG006038 | LINC01515 | AGO2 | Q9UKV8 | protein |
NONHSAG006038 | LINC01515 | DHX36 | Q9H2U1 | protein |
NONHSAG006038 | LINC01515 | DHX36 | Q9H2U1 | protein |
NONHSAG006038 | LINC01515 | Rbfox1 | Q9NWB1 | protein |
- | LINC00842 | QKI | Q96PU8 | protein |
- | LINC00842 | SFRS2 | Q01130 | protein |
- | LINC00842 | YTHDF1 | Q9BYJ9 | protein |
- | LINC00842 | MBNL2 | Q5VZF2 | protein |
- | LINC00842 | MOV10 | P22626 | protein |
- | LINC00842 | YTDC1 | Q96MU7 | protein |
- | LINC00842 | FBL | P22087 | protein |
- | LINC00842 | ACIN1 | Q9UKV3 | protein |
- | LINC00842 | HNRNPA1 | P09651 | protein |
- | LINC00842 | UPF1 | Q92900 | protein |
- | LINC00842 | DBHS | Q15233 | protein |
- | LINC00842 | PSF | P23246 | protein |
- | LINC00842 | HDAC9 | Q9UKV0 | protein |
- | LINC00842 | SMARCA4 | P51532 | protein |
- | LINC00842 | EWSR1 | Q01844 | protein |
NONHSAG005796 | LINC00842 | ADAR | P55265 | protein |
NONHSAG005796 | LINC00842 | WDR33 | Q9C0J8 | protein |
NONHSAG005796 | LINC00842 | SFRS1 | Q07955 | protein |
NONHSAG005796 | LINC00842 | ELAVL1 | P70372 | protein |
NONHSAG005796 | LINC00842 | AGO2 | Q8CJG0 | protein |
NONHSAG005796 | LINC00842 | HNRNPU | Q00839 | protein |
NONHSAG005796 | LINC00842 | CSTF2 | P33240 | protein |
NONHSAG005796 | LINC00842 | hnRNPC | P07910 | protein |
NONHSAG005796 | LINC00842 | TARBP2 | Q15633 | protein |
NONHSAG005796 | LINC00842 | RBM6 | P78332 | protein |
NONHSAG005796 | LINC00842 | RBM10 | P98175 | protein |
NONHSAG005796 | LINC00842 | UPF1 | Q92900 | protein |
NONHSAG005796 | LINC00842 | hnRNPA2B1 | O88569 | protein |
NONHSAG005796 | LINC00842 | FUS | P35637 | protein |
The list shows Ensembl/NON CODE ID, LINCRNA and UniProt ID and type of the interacting components
Table 5.
NON CODE/ ENSEMBL ID | LINCRNA | Interacting Component | miRNA ID | Type |
---|---|---|---|---|
ENSG00000163364 | LINC01116 | miR-203 | MI0000283 | miRNA |
ENSG00000163364 | LINC01116 | miR-3141 | MI0014165 | miRNA |
ENSG00000163364 | LINC01116 | miR-744-5p | MI0005559 | miRNA |
ENSG00000163364 | LINC01116 | miR-744-5p | MI0005559 | miRNA |
ENSG00000163364 | LINC01116 | miR-3612 | MI0016002 | miRNA |
ENSG00000163364 | LINC01116 | miR-744-5p | MI0005559 | miRNA |
NONHSAG035677 | LINC00882 | miR-214-3p | MI0000290 | miRNA |
NONHSAG020184 | LINC00311 | hsa-mir-125a-3p | MI0000469 | miRNA |
NONHSAG020184 | LINC00311 | hsa-miR-125b-5p | MI0000446 | miRNA |
NONHSAG020184 | LINC00311 | hsa-mir-150 | MI0000479 | miRNA |
NONHSAG020184 | LINC00311 | hsa-miR-296-3p | MI0000747 | miRNA |
NONHSAG020184 | LINC00311 | hsa-miR-4319 | MI0015848 | miRNA |
NONHSAG020184 | LINC00311 | hsa-miR-455-3p | MI0003513 | miRNA |
NONHSAG020184 | LINC00311 | hsa-miR-129-5p | MI0000252 | miRNA |
NONHSAG020184 | LINC00311 | hsa-miR-129-2-3p | MI0000473 | miRNA |
NONHSAG020184 | LINC00311 | hsa-miR-532-3p | MI0003205 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-1224-3p | MI0003764 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378a-5p | MI0000786 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378b | MI0014154 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378c | MI0015825 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378d | MI0016749 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378e | MI0016750 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378f | MI0016756 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378i | MI0016902 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-422a | MI0001444 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-665 | MI0005563 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-1197 | MI0006656 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-199a-5p | MI0000242 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-199b-5p | MI0000282 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-335-3p | MI0000816 | miRNA |
NONHSAG005796 | LINC00842 | hsa-miR-378h | MI0016808 | miRNA |
NONHSAG020184.2 | LINC00311 | SNHG4 | ENSG00000281398 | ncRNA |
The list shows Ensembl/NON CODE ID, LINCRNA and miRNA ID and type of the interacting components
Table 6.
NON CODE/ ENSEMBL ID | LINCRNA | Interacting Component | ENSEMBL ID | Type |
---|---|---|---|---|
ENSG00000163364 | LINC01116 | MYC | ENSG00000136997 | mRNA |
NONHSAG020184.2 | LINC00311 | KIAA0513 | ENSG00000135709 | mRNA |
The list shows Ensembl/NON CODE ID, LINCRNA and type of the interacting components
Prediction of targets of the miRNAs
The 24 miRNAs obtained from the above analysis targets were fed into miRDB for mRNA target prediction. mRNA targets with a score of >/= 95 were chosen. We have identified 288 mRNA targets associated with the input of 24 miRNAs.
The predicted mRNA targets were cross-referenced with our dataset to identify the common mRNAs. Subsequently, we established lincRNA-miRNA-mRNA combinations Table 7.
Table 7.
LINCRNA | Log2FC (for LINCRNA) | miRNA | mRNA target | Log2FC (for mRNA) |
---|---|---|---|---|
LINC00882 | 1.812015961 | miR-214-3p | ATP2A3 | 3.024375 |
PIM1 | 1.596972 | |||
FBXO32 | 2.52126 | |||
LINC00311 | -2.371344708 | hsa-mir-125a-3p | BRCA1 | -2.203512532 |
SH3TC2 | -2.060263012 | |||
LINC00842 | -2.799537368 | hsa-miR-1224-3p | CDC25A | -2.958067112 |
KDR | -2.369999586 | |||
SLC4A8 | -1.72618536 | |||
hsa-miR-199a-5p | HAPLN1 | -3.235820469 | ||
hsa-miR-199b-5p | HAPLN1 | -3.235820469 | ||
hsa-miR-335-3p | MCAM | -1.550103307 | ||
UTY | -1.526148211 | |||
CCDC85A | -3.03369872 | |||
KCNQ5 | -1.982236088 | |||
EPHA7 | -1.737844738 |
The list shows differentially expressed LINCRNA, relative fold change values of LINCRNA (Log2FC (for LINCRNA)), miRNA, mRNA target and relative fold change values of target mRNA (Log2FC (for mRNA)) in the same data set
Discussion
The effect of microenvironment on the initiation, maintenance and progression of solid tumors has been established beyond doubt [25]. CAFs, which constitute a significant component of the TME are a major source of secreted factors. Interaction with the CAF and derived factors not only play a significant role in promoting tumorigenesis and metastasis but also influence the response of the tumor to drugs [10, 12]. It is likely that in response to chemotherapeutic drugs, some pro-tumorigenic actions of CAFs may be activated, which in turn aid the tumor cells in escaping from the drug challenge. Studies on prostate cancer have shown that tumor cells grown in the presence of CAFs or CAF-derived factors show much higher tolerance to drugs as compared to tumor cells grown alone [26]. Also, cells grown with CAF-derived factors have a higher potential to metastasize [27]. These highlight the possibility of targeting CAF/derived factors for therapeutic purposes.
Attempts have been made to target various components of the TME, such as ECM, exosomes, CAFs, immune cells, vascular cells etc [28].
Angiotensin II receptor agonists such as Losartan, Candersartan, etc. have been shown to reduce mortality in gastro-esophageal cancer patients [29]. Losartan and its analogs reduce the secretion of collagen I by interfering with transforming growth factor-β (TGF-β) signalling. This improves the delivery of chemotherapeutics to tumor cells [30, 31]. Ronespartat (SST0001), a heparanase inhibitor has shown promising results in inhibiting tumor growth when used alone or in combination at different phases of clinical trials [32, 33]. Considering the important role of Matrix Metalloproteinases (MMPs) and collagen cross-linkers in ECM remodelling several drugs have been tried to modulate MMP activity Ex: Incyclinide, JNJ0966, Fab 3369 [34–38]. However extreme caution has to be exercised while dealing with ECM as it can also promote metastases.
Several anti—angiogenic agents such as Bevacizumab, Apatinib, anti-VEGF antibodies in various combinations along with other chemotherapeutic agents such as paclitaxel and carboplatin have shown promising results in clinical trials (NCT02885753, NCT03100955). Multiple therapeutic strategies targeting the immune system, such as inhibition of macrophage recruitment and differentiation into the pro-tumoral TAMs Ex: anti-CSF-1R neutralizing antibodies or small molecule inhibitors, antibody anti-CD204, targeted-folate-receptor beta (FRβ) [39–41]; targeting chronic inflammation using IL-1R antagonists such as Anakinra (Kineret), anti-IL-1β monoclonal antibody [42, 43]; activating the anti-tumoral activity of the TME by used of GM-CSF [44], immune checkpoint therapies such as CTLA-4 and PD-1 [45, 46] have shown promise of better prognosis.
CAF being the most abundant cell type in the TME would be attractive targets for TME therapy. Fibroblast activation protein α (FAP), a membrane bound serine protease has been targeted for therapy in combination with a variety of drugs. However, these approaches have not been very successful. It is very likely due to the fact that FAP is not specific to CAFs, but also seen in normal fibroblasts. More qualitative and quantitative comparisons between normal and cancer associated fibroblasts are required to identify more effective ways of therapeutic targeting [47, 48]. Our study has tried to address this lacuna.
CAFs are distinguished from normal fibroblasts by their contractile characteristics, and metabolic and transcriptomic activity [49, 50]. Also, they are shown to express higher levels of FAP, alpha SMA and vimentin [49, 51, 52]. However, till date, there are no known unique markers of CAF. Identification of such markers becomes extremely essential if CAFs/derived factors are to be targeted for therapy, particularly because there are both pro- and anti-tumor properties of these factors. In this study, we have used the NGS platform to do a comparative analysis of fibroblasts derived from non-malignant (BPH) and cancerous prostate. This study has identified 818 genes differentially expressed between normal and cancer-associated fibroblasts. Also, there are 17 lncRNAs which show differential expression.
Long Intergenic Non-Coding RNAs (lincRNAs) are RNA molecules exceeding 200 nucleotides, lacking protein-coding functions and non-overlapping with annotated coding genes. They impact gene expression by modulating chromatin structure, regulating transcription of nearby and distant genes, and interacting with DNA, RNA, and proteins [53–55]. In cancer patients, differential lncRNA expression has been correlated with the overall survival (OS), metastasis, as well as tumor stage/grade [56–58]. LncRNAs have been detected in body fluids like plasma, serum, and urine using real-time PCR. One of the reasons lncRNAs are suitable as cancer diagnostic and prognostic biomarkers is their remarkable stability while circulating in body fluids, particularly when enclosed within exosomes or apoptotic bodies [59]. These characteristics of lncRNA make them attractive candidates for biomarkers. These biomarkers offer a minimally invasive alternative to conventional biopsies [60]. These markers can also be used to predict the prognosis of cancer patients, assess the risk of tumor metastasis and recurrence after surgery, and also to evaluate the success of therapeutic intervention. The distinct expression profiles of cancer-associated lncRNAs, which can vary significantly among different types of cancer, hold promise as efficient tumor biomarkers in various body fluids [57, 58, 61] (Supplementary Table 1 showing LncRNA as a prognostic and diagnostic marker in different cancers and Supplementary Fig. 3 showing tissue specific LNCRNA as potential biomarkers).
Despite the fact that lincRNAs are good biomarkers, targeting lincRNA or other ncRNA for therapeutic purposes have been extremely challenging. One of the reasons being very low conservation of lncRNAs across species. A small number of lncRNAs which are conserved between humans and mice have been discovered, while many human lncRNAs are absent in mice [62, 63].
Although it has been observed that lincRNAs show specific expression patterns in cancers, the heterogeneity in tumors makes it difficult to target them. Some studies have used in-silico approaches to identify lincRNA-miRNA-mRNA combinations. For example, a study has shown the influence of LOC101928304/miR-490-3p/LRRC2, a lincRNA-miRNA-mRNA axis on Atrial Fibrillation (AF). The levels of LOC101928304 and LRRC were elevated whereas miR-490-3p exhibited a decreased expression in the myocardial tissue of AF patients [64]. However, there is not much experimental data available. Given the advantages of using lincRNAs as biomarkers and also the difficulties in targeting them for therapeutic intervention, identifying a combination of lincRNA-miRNA-mRNA may provide better options for targeting. In this study, we have predicted the targets of the differentially expressed lincRNAs and identified 15 lincRNA-miRNA-mRNA combinations. This would help in understanding the mechanism of action of these RNAs as well as identifying strategies for therapeutic targeting. However, this would in future need more experimental validation.
Supplementary information
Abbreviations
- TME
Tumor microenvironment
- CAFs
Cancer-associated fibroblasts
- BPH
Benign Prostate Hyperplasia
- LINCRNA
Non-Intergenic Non-Coding RNA
- TCGA
The Cancer Genome Atlas
- ECM
Extracellular matrix
- TRUS
Transrectal Ultrasound Scan
- TURP
Transurethral Resection of the Prostate
- RPMI
Roswell Park Memorial Institute
- PenStrep
Penicillin Streptomycin
- RIN
RNA Integrity Number
- ncRNA
Non-Coding RNA
- LNCRNA
Long Non-Coding RNA
- LINCRNA
Long-intergenic Non-Coding RNA
- miRNA
MicroRNA
- circRNA
CircularRNA
- mRNA
Messenger RNA
- FAP
Fibroblast Activation Protein
- SMA
Smooth Muscle Actin
- OS
Overall Survival
Authors' contributions
AA analyzed the transcriptomic data, prepared the manuscript draft with all figures and tables. MSM, RRA, and NN helped in the collection of patient samples, deriving the fibroblasts and preliminary characterization. VB and NT helped in the collection of patient samples and clinical/pathological evaluation. RK helped co-ordinate all the patient-related work and helped in procuring funding. PR conceived and strategized the study, procured the funding, finalized the manuscript. All authors reviewed and approved the manuscript
Clinical trial number
Not applicable.
Funding
This study was supported by the Indian Council for Medical Research, Govt of India (2019 − 0937). AA is supported by Lady Tata Memorial Trust Fellowship. The authors thank the Centre for Human Genetics, Bengaluru, and the Institute of Nephro-Urology, Bengaluru for all the support during the course of this study.
Availability of data and materials
The datasets generated and analyzed during this study are available on GEO, Accession Number GSE270705.
Declarations
Ethics approval and consent to participate
The study was approved by the Institutional Ethics Committee of both the participating institutions (CHG/077(b)/IEC/2019-20/001 and EC/01/2019). Informed consent has been obtained from all participants whose tissue samples have been used in this study. The identity of the patients has been kept confidential.
The study has been conducted in accordance with the Declaration of Helsinki.
This study presented here was funded by the Indian Council for Medical Research, Govt of India (2019 − 0937), granted to PR.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
References
- 1.de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403. [DOI] [PubMed] [Google Scholar]
- 2.Patel H, et al. Modulating secreted components of tumor microenvironment: a masterstroke in tumor therapeutics. Cancer Biol Ther. 2018;19(1):3–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Baghban R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221: 107753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 2012;11(2):257–66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Mao X, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Bu L, et al. Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Sci. 2020;111(10):3468–77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Sun Y, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18(9):1359–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Sun Y, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35(33):4321–34. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 11.Zhang D, et al. Tumor-stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Res. 2018;78(7):1700–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Qiao Y, et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene. 2018;37(7):873–83. [DOI] [PubMed] [Google Scholar]
- 13.Lotti F, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210(13):2851–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Calon A, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47(4):320–9. [DOI] [PubMed] [Google Scholar]
- 15.Olive KP, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Tang YA, et al. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci U S A. 2018;115(26):E5990-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Sansone P, et al. Evolution of Cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by Stromal Microvesicles. Cancer Res. 2017;77(8):1927–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Yu T, et al. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene. 2017;36(15):2131–45. [DOI] [PubMed] [Google Scholar]
- 19.Asif PJ et al. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers (Basel), 2021;13(18). [DOI] [PMC free article] [PubMed]
- 20.Jena BC, et al. Cancer associated fibroblast mediated chemoresistance: a paradigm shift in understanding the mechanism of tumor progression. Biochim Biophys Acta Rev Cancer. 2020;1874(2): 188416. [DOI] [PubMed] [Google Scholar]
- 21.Rizzolio S, Giordano S, Corso S. The importance of being CAFs (in cancer resistance to targeted therapies). J Exp Clin Cancer Res. 2022;41(1):319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Zheng Y, et al. NPInter v5.0: ncRNA interaction database in a new era. Nucleic Acids Res. 2023;51(D1):D232-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.NPInter. Available from: http://bigdata.ibp.ac.cn/npinter5/.
- 24.miRDB. Available from: https://mirdb.org/.
- 25.Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Cheteh EH, et al. Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death Dis. 2017;8(6):e2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Linxweiler J, et al. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Rep. 2020;10(1):12575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Roma-Rodrigues C, et al. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20(4):840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Busby J, et al. Angiotensin receptor blocker use and gastro-oesophageal cancer survival: a population-based cohort study. Aliment Pharmacol Ther. 2018;47(2):279–88. [DOI] [PubMed] [Google Scholar]
- 30.Coulson R, et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget. 2017;8(12):18640–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Diop-Frimpong B, et al. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Cassinelli G, et al. Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochem Pharmacol. 2013;85(10):1424–32. [DOI] [PubMed] [Google Scholar]
- 33.Ritchie JP, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res. 2011;17(6):1382–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Chu QS, et al. A phase II and pharmacological study of the matrix metalloproteinase inhibitor (MMPI) COL-3 in patients with advanced soft tissue sarcomas. Invest New Drugs. 2007;25(4):359–67. [DOI] [PubMed] [Google Scholar]
- 35.Gu Y, et al. Inhibition of breast cancer cell extracellular matrix degradative activity by chemically modified tetracyclines. Ann Med. 2005;37(6):450–60. [DOI] [PubMed] [Google Scholar]
- 36.Fingleton B. CMT-3. CollaGenex. Curr Opin Investig Drugs. 2003;4(12):1460–7. [PubMed] [Google Scholar]
- 37.Scannevin RH, et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J Biol Chem. 2017;292(43):17963–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Ling B, et al. A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models. Oncotarget. 2017;8(35):58372–85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Szebeni GJ et al. Pro-tumoral inflammatory myeloid cells as emerging therapeutic targets. Int J Mol Sci, 2016. 17(11). [DOI] [PMC free article] [PubMed]
- 40.Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Komohara Y, et al. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99Pt B:p180-185. [DOI] [PubMed] [Google Scholar]
- 42.Holen I, et al. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget. 2016;7(46):75571–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Tulotta C, Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer. 2018;25(7):R421-434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Yan WL, et al. Activation of GM-CSF and TLR2 signaling synergistically enhances antigen-specific antitumor immunity and modulates the tumor microenvironment. J Immunother Cancer. 2021;9(10):e002758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Shiravand Y, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Boohaker RJ, et al. Rational design and development of a peptide inhibitor for the PD-1/PD-L1 interaction. Cancer Lett. 2018;434:11–21. [DOI] [PubMed] [Google Scholar]
- 47.Ishii N, et al. Conophylline suppresses pancreatic cancer desmoplasia and cancer-promoting cytokines produced by cancer-associated fibroblasts. Cancer Sci. 2019;110(1):334–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59(1):85–93. [DOI] [PubMed] [Google Scholar]
- 49.Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 2010;15(1):166–79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.De Wever O, et al. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 2008;123(10):2229–38. [DOI] [PubMed] [Google Scholar]
- 51.Muchlińska A, et al. Alpha-smooth muscle actin-positive cancer-associated fibroblasts secreting osteopontin promote growth of luminal breast cancer. Cell Mol Biol Lett. 2022;27(1):45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Gilardi L, et al. Imaging Cancer-Associated fibroblasts (CAFs) with FAPi PET. Biomedicines. 2022;10(3):523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Ti W, Wang J, Cheng Y. The interaction between ong non-coding RNAs and Cancer-Associated fibroblasts in lung cancer. Front Cell Dev Biol. 2021;9:714125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19(3):143–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Sebastian-delaCruz M, et al. The role of lncRNAs in gene expression regulation through mRNA stabilization. Non-Coding RNA. 2021;7(1):3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Qian Y, Shi L, Luo Z. Long non-coding RNAs in Cancer: implications for diagnosis, prognosis, and Therapy. Front Med (Lausanne). 2020;7:612393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Gao N, et al. Long non-coding RNAs: the Regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol. 2020;10: 598817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Beylerli O, et al. Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res. 2022;7(2):66–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Akers JC, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Su YJ, et al. Circulating long noncoding RNA as a potential target for prostate ancer. Int J Mol Sci. 2015;16(6):13322–38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in ancer. Dis Markers. 2017;2017:p7243968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Necsulea A, et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature. 2014;505(7485):635–40. [DOI] [PubMed] [Google Scholar]
- 63.Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9. [DOI] [PubMed] [Google Scholar]
- 64.Ke X, et al. Construction and analysis of the lncRNA-miRNA-mRNA network based on competing endogenous RNA in Atrial Fibrillation. Front Cardiovasc Med. 2022;9: 791156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Luo J, et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat Commun. 2019;10(1):2571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Salameh A, et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A. 2015;112(27):8403–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Ren S, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949–59. [DOI] [PubMed] [Google Scholar]
- 68.Pal G, et al. Long noncoding RNA from PVT1 exon 9 is overexpressed in prostate Cancer and induces Malignant Transformation and Castration Resistance in prostate epithelial cells. Genes. 2019;10(12): 964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Zhang Y, et al. An androgen reduced transcript of LncRNA GAS5 promoted prostate cancer proliferation. PLoS ONE. 2017;12(8): e0182305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Kidd SG, et al. High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia. 2021;23(6):634–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Zheng R, et al. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer. 2018;17(1):143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Xue M, et al. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci. 2016;107(1):18–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Liu D, et al. LncRNA SPRY4-IT1 sponges mir-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett. 2017;388:281–91. [DOI] [PubMed] [Google Scholar]
- 74.Sun X, et al. Long non-coding RNA HOTAIR regulates cyclin J via inhibition of microRNA-205 expression in bladder cancer. Cell Death Dis. 2015;6(10):e1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Zhang K, et al. Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. Cancer Biomark. 2016;17(2):187–94. [DOI] [PubMed] [Google Scholar]
- 76.Younger ST, Rinn JL. Lnc’-ing enhancers to MYC regulation. Cell Res. 2014;24(6):643–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Ling H, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Xu C, et al. MALAT-1: a long non-coding RNA and its important 3’ end functional motif in colorectal cancer metastasis. Int J Oncol. 2011;39(1):169–75. [DOI] [PubMed] [Google Scholar]
- 79.Zhang X, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88(11):5119–26. [DOI] [PubMed] [Google Scholar]
- 80.Kogo R, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6. [DOI] [PubMed] [Google Scholar]
- 81.Zhang J, et al. HOTAIR contributes to the carcinogenesis of gastric cancer via modulating cellular and exosomal miRNAs level. Cell Death Dis. 2020;11(9):780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Okugawa Y, et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis. 2014;35(12):2731–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Li L, et al. The human RNA surveillance factor UPF1 modulates gastric cancer progression by Targeting Long non-coding RNA MALAT1. Cell Physiol Biochem. 2017;42(6):2194–206. [DOI] [PubMed] [Google Scholar]
- 84.Xia H, et al. The lncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget. 2016;7(35):56209–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Abbastabar M, et al. lncRNA involvement in hepatocellular carcinoma metastasis and prognosis. EXCLI J. 2018;17:900–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Shi WH, et al. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma. Tumour Biol. 2015;36(4):2501–7. [DOI] [PubMed] [Google Scholar]
- 87.Zhang X, et al. Elevated expression of CCAT2 is associated with poor prognosis in esophageal squamous cell carcinoma. J Surg Oncol. 2015;111(7):834–9. [DOI] [PubMed] [Google Scholar]
- 88.Wang Y, et al. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 2015;367(2):122–8. [DOI] [PubMed] [Google Scholar]
- 89.Di W, et al. The long non-coding RNA HOTAIR promotes thyroid cancer cell growth, invasion and migration through the mir-1-CCND2 axis. Am J Cancer Res. 2017;7(6):1298–309. [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
The datasets generated and analyzed during this study are available on GEO, Accession Number GSE270705.