Skip to main content
BMC Cancer logoLink to BMC Cancer
. 2024 Oct 5;24:1231. doi: 10.1186/s12885-024-13006-x

Comparative transcriptome of normal and cancer-associated fibroblasts

Apoorva Abikar 1,3, Mohammad Mehaboob Subhani Mustafa 1, Radhika Rajiv Athalye 1, Namratha Nadig 1, Ninad Tamboli 2, Vinod Babu 2, Ramaiah Keshavamurthy 2, Prathibha Ranganathan 1,3,
PMCID: PMC11456241  PMID: 39369238

Abstract

Background

The characteristics of a tumor are largely determined by its interaction with the surrounding micro-environment (TME). TME consists of both cellular and non-cellular components. Cancer-associated fibroblasts (CAFs) are a major component of the TME. They are a source of many secreted factors that influence the survival and progression of tumors as well as their response to drugs. Identification of markers either overexpressed in CAFs or unique to CAFs would pave the way for novel therapeutic strategies that in combination with conventional chemotherapy are likely to have better patient outcome.

Methods

Fibroblasts have been derived from Benign Prostatic Hyperplasia (BPH) and prostate cancer. RNA from these has been used to perform a transcriptome analysis in order to get a comparative profile of normal and cancer-associated fibroblasts.

Results

The study has identified 818 differentially expressed mRNAs and 17 lincRNAs between normal and cancer-associated fibroblasts. Also, 15 potential lincRNA-miRNA-mRNA combinations have been identified which may be potential biomarkers.

Conclusions

This study identified differentially expressed markers between normal and cancer-associated fibroblasts that would help in targeted therapy against CAFs/derived factors, in combination with conventional therapy. However, this would in future need more experimental validation.

Supplementary Information

The online version contains supplementary material available at 10.1186/s12885-024-13006-x.

Keywords: Tumor microenvironment, Cancer-associated fibroblasts, Chemoresistance, Non-coding RNA, LINCRNA, Prostate cancer

Introduction

The tumor microenvironment (TME) is a complex and dynamic ecosystem, which is shaped by the interactions between the tumor cells and the non-cancerous cells as well as the extra-cellular matrix surrounding the tumor. Although the framework and composition of the TME may vary according to the tumor type, some hallmarks of the TME remain the same. The TME is comprised of a variety of cell-types such as immune cells (T cells, B cells, Tregs, Neutrophils, Macrophages, Dendritic cells, Natural Killer cells, Mast cells etc.) cancer-associated fibroblasts (CAFs), endothelial cells (ECs), pericytes, adipocytes and neurons (Reviewed in [1]and references therin). The acellular components of the TME includes mostly secreted factors such as growth factors, cytokines, extracellular matrix (ECM) proteins, and metabolites [2]. The dynamic and reciprocal interactions between the tumor and its microenvironment influence cancer cell survival, local invasion, metastasis [3, 4], immune surveillance, angiogenesis [5] as well as response to therapy [6, 7].

One of the major cell types in the TME is cancer-associated fibroblasts. CAFs are a major source of growth factors, cytokines, and other signaling molecules, which impact cancer cell behavior [6]. When subjected to chemotherapy, along with the cancer cells, the CAFs also are subjected to changes. These therapies are likely to stimulate CAFs to release factors that could influence the stemness, metabolic status, signaling cascades, etc. within the tumor, which can prevent cancer cell eradication and perhaps cause recurrence [8]. In prostate cancer models, it has been observed that there is therapy induced activation of Wnt signal which can result in drug resistance [9, 10]. In pancreatic cancer, CAFs protect cancer cells from gemcitabine-induced cell death by activating NF-κB through IL-1β and IL‐1 receptor‐associated kinase 4 (IRAK4) [11]. In ESCC, cisplatin resistance is conferred by IL‐6/CXCR7 axis, where IL-6 is mainly secreted by the CAFs [12]. Transcriptome and proteome analysis from different models have emphasized the role of interleukins secreted by CAFs on conferring therapy resistance in various models (reviewed in [8]).

Cancer stem cells (CSC) have multiple mechanisms to overcome chemotherapy and TME has a significant influence in maintenance of CSCs. IL-17, secreted by CAFs and TGF-b signaling in CAFs have shown to influence the stemness of the CSCs [13, 14]. Besides, SHH signaling and its interaction with HIF-1a are observed to enhance the CSC properties [15, 16]. In a breast cancer model, CAF-derived miR-221 activated an ERlow/Notchhigh feed-forward loop responsible for the generation of CD133high CSCs [17]. Multiple studies have shown that CAF derived Interleukins, Wnt as well as ncRNAs influence the CSC population and hence therapeutic resistance (reviewed in [8]).

Metabolic changes in CAFs have received significant attention over the last few years. PI3K/AKT pathway in cancer cells, has been observed to induce Warburg effect in CAFs through cytoplasmic translocation of the nuclear G-protein‐coupled estrogen receptor (GPER) and aberrant activation of the GPER signaling pathway. CAFs in turn deliver lactate transporters to cancer cells, resulting in a coupled energy metabolism process that can increase drug resistance [18]. These and other metabolic changes need to be explored further for their role in conferring resistance.

CAFs are pivotal in driving cancer progression through their involvement in processes such as extracellular matrix (ECM) deposition and remodeling, extensive communication with cancer cells, promoting epithelial-to-mesenchymal transition (EMT), facilitating invasion, metastasis, and even contributing to therapy resistance [19]. CAFs are also recognized for their involvement in developing resistance to anti-cancer therapy by providing a protective environment for tumor cells. There exists a symbiotic relationship between tumor cells and CAFs, wherein CAFs provide the necessary resources for tumor cell growth and survival, thereby contributing to the development of a chemoresistant phenotype [20]. Considering the pleiotropic effects of the tumor microenvironment, particularly CAFs, an insight into the specific factors responsible for therapeutic resistance can potentially pave the way for newer and more effective strategies for treatment. The major hurdle in this direction is the lack of distinguishing biomarkers for CAFs that would allow for their exclusive targeting. There is a high heterogeneity of CAF functions- both pro-tumorigenic and anti-tumorigenic within the same tumor [21]. Hence targeting the CAFs/derived factors has to be done with extreme caution to avoid adverse effects. Additionally, targeting CAFs might lead to significant clinical benefits, as pro-tumorigenic CAFs can support tumor progression, but they may not be indispensable for tumor growth and survival. In other words, tumor cells may not solely depend on the presence of CAFs. CAF-targeted therapy in combination with other chemotherapeutic drugs is likely to improve treatment outcomes.

Our study has used a transcriptome analysis to identify differentially expressed genes and non-coding RNAs between normal and cancer-associated fibroblasts on a human prostate model.

Materials and methods

Clinical specimen collection

All patient samples were collected from the Institute of Nephro-Urology (Department of Urology), Bengaluru. The study was approved by the Institutional Ethics committee of both the institutions and informed consent has been taken from all the participants. The identity of the participants has been kept anonymous. Samples were taken either by Transrectal Ultrasound scan (TRUS) or Transurethral resection of the prostate (TURP) methods. Classification of the samples as benign or malignant was done by pathologists as per standard criteria.

Culturing of fibroblasts

Surgical or biopsy specimens were rinsed thoroughly in sterile saline and transferred to transport media (RPMI 1640 (Gibco, Cat No: 23400-021) with 2X PenStrep (Gibco, Cat No: 15140122). Subsequently, these specimens were rinsed thoroughly with RPMI media containing antibiotics, minced into fine pieces, and transferred to culture flasks keeping sufficient distance between each piece for the cells to migrate out. Media was changed periodically. Once the fibroblasts migrated out of the tissues, cells were transferred to fresh flasks and cultured in RPMI supplemented with FBS.

RNA isolation

Total RNA was isolated from the cultured fibroblasts using a Qiagen RNeasy kit (Cat No: 74104) according to the manufacturer’s instructions. RNA was quantified on nanodrop (Thermo Scientific™ NanoDrop™). The quality of RNA samples was assessed by running them on 1% agarose gel.

RNA sequencing

RNA sequencing was outsourced to Wipro Life Science Labs, Bengaluru. Quality assessment was done using Agilent TapeStation and all samples had RIN > 9 (Supplemenatry file). Samples were further taken for library preparation and RNA sequencing using the Illumina platform (NextSeq 2000). (The raw data files for this data set is available on GEO, accession number GSE270705).

RNA sequencing analysis workflow

The quality assessment of the data was performed for base quality and contamination by sequencing artifacts. The adapters were trimmed and poor-quality sequences were filtered using Trim Galore. Trimmed sequence reads were mapped to reference genome (Assembly: hg38, GRCh38.p12 (GCA_000001405.27), Dec. 2017, Data Source: UCSC Genome Browser, Weblink:http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/analysisSet/hg38.analysisSet.fa.gz) with splice aware alignment tool STAR. R subread R package was used to get feature-specific expression counts. Low-count features across the samples were detected and removed using the NOISeq R package followed by expression count normalization with the TMM method (from the NOISeq R package). Differential expression analysis was performed with the NOISeq R package where the group information was used to define biological replicates. Genes/transcripts (mRNA and lincRNA) were considered differentially expressed when they showed at least a log2 fold change of 1.5 between normal and CAFs (Supplementary Fig. 1).

qRT-PCR analysis

2 µg RNA was converted to cDNA using Verso cDNA synthesis kit (Thermo Fisher Scientific Cat no: AB1453A). 20ng RNA equivalent cDNA was used for the PCR reactions. qRT-PCR was carried out using the SYBR FAST Universal 2XqPCR Master Mix, (Roche, Cat no: KK4601). Normalization was done using RPL35. The fold changes with respect to expression level in control samples was calculated by the ddCt method. The experiment was done on 3 control samples and 2 CAF samples and the average fold change with SD has been tabulated.

LINCRNA functional annotation

NPInter v5.0 (http://bigdata.ibp.ac.cn/npinter5/) [22, 23] is a database that provides collective information about the multidimensional interactions of ncRNAs (lincRNA, miRNA, circRNA, etc.) with protein, RNA, and DNA. This database contains information about RNA interactions based on literature mining and high-throughput sequencing data with functional annotation [22].

The list of differentially expressed lincRNAs from our experiment was fed into NPInter v5.0 database and segregated according to the interactors (proteins, mRNA, and ncRNA).

The miRNAs obtained from the lincRNA-miRNA (ncRNA) interaction (from NPInter v5.0 database) were further subjected to the miRDB database (https://mirdb.org/) [24] to predict its mRNA targets (Supplementary Fig. 2).

Results

Differential expression of genes between normal and cancer-associated fibroblasts

We have identified 818 genes and 17 long intergenic non-coding RNAs (lincRNAs) that exhibit differential expression between normal fibroblasts and CAFs with a minimum log2 fold of 1.5. Of these, 380 genes and 7 lincRNAs were found to be overexpressed (Table 1), while 438 genes and 10 lincRNAs were under-expressed (Table 2) in CAFs as compared to normal fibroblasts.

Table 1.

List of overexpressed mRNAs and LINCRNAs in cancer-associated fibroblasts compared to normal fibroblasts

Sl No Gene ID Log2FC Symbol
1 ENSG00000184937 9.338678226 WT1
2 ENSG00000120093 9.066529369 HOXB3
3 ENSG00000182742 8.440665024 HOXB4
4 ENSG00000106483 7.457728693 SFRP4
5 ENSG00000183242 7.266975633 WT1-AS
6 ENSG00000165507 6.8004577 DEPP1
7 ENSG00000163364 6.193836171 LINC01116
8 ENSG00000175879 5.293002219 HOXD8
9 ENSG00000156466 5.080737946 GDF6
10 ENSG00000169418 4.968358544 NPR1
11 ENSG00000188783 4.644111631 PRELP
12 ENSG00000198774 4.609020395 RASSF9
13 ENSG00000131471 4.565470197 AOC3
14 ENSG00000106819 4.519034135 ASPN
15 ENSG00000075275 4.434781935 CELSR1
16 ENSG00000196616 4.350248405 ADH1B
17 ENSG00000146374 4.301235355 RSPO3
18 ENSG00000146038 4.29610124 DCDC2
19 ENSG00000112936 4.254281304 C7
20 ENSG00000244694 4.169584725 PTCHD4
21 ENSG00000135914 4.126018242 HTR2B
22 ENSG00000136235 4.080788268 GPNMB
23 ENSG00000005471 3.893427681 ABCB4
24 ENSG00000177363 3.886142424 LRRN4CL
25 ENSG00000086289 3.817819494 EPDR1
26 ENSG00000225684 3.807004332 FAM225B
27 ENSG00000146938 3.720873944 NLGN4X
28 ENSG00000110076 3.67301846 NRXN2
29 ENSG00000205221 3.625265335 VIT
30 ENSG00000139910 3.612874671 NOVA1
31 ENSG00000137507 3.593886089 LRRC32
32 ENSG00000167306 3.581243704 MYO5B
33 ENSG00000164161 3.576706765 HHIP
34 ENSG00000164318 3.569735487 EGFLAM
35 ENSG00000231528 3.492219584 FAM225A
36 ENSG00000172264 3.490561901 MACROD2
37 ENSG00000180777 3.487256802 ANKRD30B
38 ENSG00000138449 3.435323115 SLC40A1
39 ENSG00000131370 3.430490091 SH3BP5
40 ENSG00000173917 3.379890194 HOXB2
41 ENSG00000100302 3.374791795 RASD2
42 ENSG00000157214 3.373774391 STEAP2
43 ENSG00000260552 3.332515698 COSMOC
44 ENSG00000248144 3.324284207 ADH1C
45 ENSG00000072041 3.304587859 SLC6A15
46 ENSG00000138135 3.286841035 CH25H
47 ENSG00000183682 3.268320942 BMP8A
48 ENSG00000096696 3.242335703 DSP
49 ENSG00000145242 3.231906415 EPHA5
50 ENSG00000078081 3.222529548 LAMP3
51 ENSG00000101680 3.21461969 LAMA1
52 ENSG00000166923 3.181087552 GREM1
53 ENSG00000171119 3.178048407 NRTN
54 ENSG00000115252 3.1689023 PDE1A
55 ENSG00000129467 3.164502988 ADCY4
56 ENSG00000145819 3.148256737 ARHGAP26
57 ENSG00000106809 3.147514635 OGN
58 ENSG00000055732 3.103481133 MCOLN3
59 ENSG00000135643 3.087942208 KCNMB4
60 ENSG00000065320 3.080524368 NTN1
61 ENSG00000070193 3.076239219 FGF10
62 ENSG00000267414 3.070509607 SETBP1-DT
63 ENSG00000074370 3.024375298 ATP2A3
64 ENSG00000152217 3.010426863 SETBP1
65 ENSG00000179954 2.984447115 SSC5D
66 ENSG00000016082 2.979521208 ISL1
67 ENSG00000136040 2.979012692 PLXNC1
68 ENSG00000235092 2.971718084 ID2-AS1
69 ENSG00000163794 2.951338436 UCN
70 ENSG00000244242 2.945313304 IFITM10
71 ENSG00000112096 2.940026071 SOD2
72 ENSG00000121005 2.931365251 CRISPLD1
73 ENSG00000139364 2.918854199 TMEM132B
74 ENSG00000164106 2.915361292 SCRG1
75 ENSG00000197971 2.87570475 MBP
76 ENSG00000231007 2.875103234 CDC20P1
77 ENSG00000106624 2.854540897 AEBP1
78 ENSG00000101115 2.849787273 SALL4
79 ENSG00000006210 2.847602797 CX3CL1
80 ENSG00000168427 2.808700829 KLHL30
81 ENSG00000182463 2.807335587 TSHZ2
82 ENSG00000189409 2.805577626 MMP23B
83 ENSG00000117122 2.802217897 MFAP2
84 ENSG00000165959 2.758592315 CLMN
85 ENSG00000131634 2.75181617 TMEM204
86 ENSG00000168477 2.742397705 TNXB
87 ENSG00000248290 2.724225106 TNXA
88 ENSG00000215914 2.718914487 MMP23A
89 ENSG00000186868 2.711375311 MAPT
90 ENSG00000170345 2.692482283 FOS
91 ENSG00000154258 2.690792336 ABCA9
92 ENSG00000180481 2.678866617 GLIPR1L2
93 ENSG00000133083 2.661308127 DCLK1
94 ENSG00000082482 2.659723066 KCNK2
95 ENSG00000048052 2.658813636 HDAC9
96 ENSG00000162551 2.644404231 ALPL
97 ENSG00000173805 2.640886128 HAP1
98 ENSG00000189056 2.639778484 RELN
99 ENSG00000253661 2.63880641 ZFHX4-AS1
100 ENSG00000171791 2.610282773 BCL2
101 ENSG00000144837 2.601860367 PLA1A
102 ENSG00000169184 2.599944099 MN1
103 ENSG00000089820 2.574305154 ARHGAP4
104 ENSG00000181634 2.56427507 TNFSF15
105 ENSG00000178015 2.560445983 GPR150
106 ENSG00000167216 2.537221974 KATNAL2
107 ENSG00000028277 2.532129932 POU2F2
108 ENSG00000178081 2.529858375 ULK4P3
109 ENSG00000004776 2.527119447 HSPB6
110 ENSG00000116675 2.523980391 DNAJC6
111 ENSG00000156804 2.52126043 FBXO32
112 ENSG00000166664 2.502047488 CHRFAM7A
113 ENSG00000184292 2.4903466 TACSTD2
114 ENSG00000137942 2.486706943 FNBP1L
115 ENSG00000163132 2.461845915 MSX1
116 ENSG00000230148 2.455525439 HOXB-AS1
117 ENSG00000079931 2.449156028 MOXD1
118 ENSG00000187479 2.449071496 C11orf96
119 ENSG00000172348 2.448876698 RCAN2
120 ENSG00000092929 2.445627941 UNC13D
121 ENSG00000186340 2.420950706 THBS2
122 ENSG00000185567 2.416942281 AHNAK2
123 ENSG00000143387 2.414727514 CTSK
124 ENSG00000165124 2.407244712 SVEP1
125 ENSG00000182379 2.402168936 NXPH4
126 ENSG00000123700 2.399277025 KCNJ2
127 ENSG00000268883 2.391696562 PNMA6B
128 ENSG00000135929 2.390048724 CYP27A1
129 ENSG00000166592 2.388259231 RRAD
130 ENSG00000180155 2.384488858 LYNX1
131 ENSG00000099960 2.384307936 SLC7A4
132 ENSG00000160013 2.37946615 PTGIR
133 ENSG00000152049 2.371373176 KCNE4
134 ENSG00000117586 2.367762203 TNFSF4
135 ENSG00000188112 2.366857463 C6orf132
136 ENSG00000125246 2.366405093 CLYBL
137 ENSG00000170873 2.365388741 MTSS1
138 ENSG00000185250 2.364877963 PPIL6
139 ENSG00000184985 2.360497315 SORCS2
140 ENSG00000053524 2.358290643 MCF2L2
141 ENSG00000064655 2.356374576 EYA2
142 ENSG00000166341 2.353827343 DCHS1
143 ENSG00000139117 2.331754284 CPNE8
144 ENSG00000164647 2.331093887 STEAP1
145 ENSG00000121898 2.329546823 CPXM2
146 ENSG00000184349 2.326907614 EFNA5
147 ENSG00000155629 2.319366832 PIK3AP1
148 ENSG00000153094 2.313590878 BCL2L11
149 ENSG00000073849 2.312193881 ST6GAL1
150 ENSG00000145911 2.307535495 N4BP3
151 ENSG00000179104 2.306651777 TMTC2
152 ENSG00000133110 2.304364639 POSTN
153 ENSG00000011201 2.300441534 ANOS1
154 ENSG00000027075 2.299717173 PRKCH
155 ENSG00000085563 2.297166128 ABCB1
156 ENSG00000150907 2.296836959 FOXO1
157 ENSG00000138028 2.295512338 CGREF1
158 ENSG00000122877 2.289440613 EGR2
159 ENSG00000182175 2.28805904 RGMA
160 ENSG00000270441 2.286773813 LAMB2P1
161 ENSG00000116396 2.282150715 KCNC4
162 ENSG00000136960 2.266626397 ENPP2
163 ENSG00000248587 2.262386263 GDNF-AS1
164 ENSG00000185345 2.258116067 PRKN
165 ENSG00000148426 2.256779282 PROSER2
166 ENSG00000061918 2.247439143 GUCY1B1
167 ENSG00000092068 2.24098848 SLC7A8
168 ENSG00000275395 2.234570285 FCGBP
169 ENSG00000151490 2.20727056 PTPRO
170 ENSG00000139597 2.207034399 N4BP2L1
171 ENSG00000247157 2.204595176 LINC01252
172 ENSG00000138646 2.203203888 HERC5
173 ENSG00000172403 2.201543978 SYNPO2
174 ENSG00000136404 2.191272623 TM6SF1
175 ENSG00000146555 2.18336527 SDK1
176 ENSG00000168621 2.178626681 GDNF
177 ENSG00000105825 2.174426101 TFPI2
178 ENSG00000064309 2.174214004 CDON
179 ENSG00000140945 2.169223331 CDH13
180 ENSG00000109610 2.157112704 SOD3
181 ENSG00000164742 2.156264764 ADCY1
182 ENSG00000141837 2.154368705 CACNA1A
183 ENSG00000146950 2.149426889 SHROOM2
184 ENSG00000204967 2.149380077 PCDHA4
185 ENSG00000115457 2.148909168 IGFBP2
186 ENSG00000060718 2.147967361 COL11A1
187 ENSG00000175344 2.146649503 CHRNA7
188 ENSG00000121316 2.129055023 PLBD1
189 ENSG00000170775 2.127857405 GPR37
190 ENSG00000176723 2.122935457 ZNF843
191 ENSG00000132561 2.117237938 MATN2
192 ENSG00000132554 2.115887216 RGS22
193 ENSG00000223485 2.113157959 LINC01615
194 ENSG00000162817 2.110368888 C1orf115
195 ENSG00000088881 2.109274054 EBF4
196 ENSG00000188372 2.105592321 ZP3
197 ENSG00000074181 2.102490156 NOTCH3
198 ENSG00000235961 2.101952544 PNMA6A
199 ENSG00000167992 2.093637143 VWCE
200 ENSG00000138650 2.089573305 PCDH10
201 ENSG00000138759 2.085680757 FRAS1
202 ENSG00000197461 2.081122778 PDGFA
203 ENSG00000266714 2.075813496 MYO15B
204 ENSG00000238103 2.074829611 RPL9P7
205 ENSG00000077157 2.074613986 PPP1R12B
206 ENSG00000102032 2.07383953 RENBP
207 ENSG00000228903 2.069376405 RASA4CP
208 ENSG00000251396 2.068860492 LINC01301
209 ENSG00000151623 2.067577773 NR3C2
210 ENSG00000125510 2.053409396 OPRL1
211 ENSG00000245248 2.051615405 USP2-AS1
212 ENSG00000211445 2.051018294 GPX3
213 ENSG00000251141 2.046164026 MRPS30-DT
214 ENSG00000267365 2.045033739 KCNJ2-AS1
215 ENSG00000228221 2.04070205 LINC00578
216 ENSG00000203867 2.032344927 RBM20
217 ENSG00000174945 2.020272513 AMZ1
218 ENSG00000115604 2.009952757 IL18R1
219 ENSG00000135604 2.00924409 STX11
220 ENSG00000161835 1.989514328 TAMALIN
221 ENSG00000138678 1.980588605 GPAT3
222 ENSG00000099953 1.97665952 MMP11
223 ENSG00000136237 1.966980838 RAPGEF5
224 ENSG00000247317 1.961468975 LY6E-DT
225 ENSG00000091137 1.961199971 SLC26A4
226 ENSG00000133106 1.955593857 EPSTI1
227 ENSG00000067606 1.951176918 PRKCZ
228 ENSG00000188042 1.949712405 ARL4C
229 ENSG00000121769 1.946715273 FABP3
230 ENSG00000053328 1.946150549 METTL24
231 ENSG00000119227 1.944119988 PIGZ
232 ENSG00000242265 1.943038605 PEG10
233 ENSG00000158270 1.942012211 COLEC12
234 ENSG00000090339 1.939652022 ICAM1
235 ENSG00000120051 1.937608095 CFAP58
236 ENSG00000186564 1.934041687 FOXD2
237 ENSG00000170667 1.931915044 RASA4B
238 ENSG00000171812 1.928787106 COL8A2
239 ENSG00000171298 1.918638878 GAA
240 ENSG00000136244 1.914540053 IL6
241 ENSG00000123689 1.914379557 G0S2
242 ENSG00000116183 1.910021948 PAPPA2
243 ENSG00000070159 1.909849322 PTPN3
244 ENSG00000177989 1.907647864 ODF3B
245 ENSG00000105808 1.901189602 RASA4
246 ENSG00000143494 1.883805272 VASH2
247 ENSG00000124212 1.882029068 PTGIS
248 ENSG00000017427 1.881716853 IGF1
249 ENSG00000126709 1.877126382 IFI6
250 ENSG00000054938 1.87640479 CHRDL2
251 ENSG00000160781 1.876267747 PAQR6
252 ENSG00000185522 1.873518829 LMNTD2
253 ENSG00000184489 1.87301321 PTP4A3
254 ENSG00000164440 1.87150095 TXLNB
255 ENSG00000196220 1.870403189 SRGAP3
256 ENSG00000236609 1.86738356 ZNF853
257 ENSG00000124107 1.860586158 SLPI
258 ENSG00000213397 1.860217516 HAUS7
259 ENSG00000230453 1.859718833 ANKRD18B
260 ENSG00000111058 1.85627795 ACSS3
261 ENSG00000111728 1.854599204 ST8SIA1
262 ENSG00000167191 1.851559449 GPRC5B
263 ENSG00000154262 1.838953254 ABCA6
264 ENSG00000236404 1.838660652 VLDLR-AS1
265 ENSG00000205464 1.83481979 ATP6AP1L
266 ENSG00000173890 1.833899338 GPR160
267 ENSG00000163393 1.831146569 SLC22A15
268 ENSG00000083067 1.830961882 TRPM3
269 ENSG00000183160 1.826191137 TMEM119
270 ENSG00000152518 1.825645378 ZFP36L2
271 ENSG00000151322 1.824665719 NPAS3
272 ENSG00000087076 1.823705208 HSD17B14
273 ENSG00000198947 1.818442888 DMD
274 ENSG00000103485 1.818412324 QPRT
275 ENSG00000079337 1.817533512 RAPGEF3
276 ENSG00000261087 1.817317143 ZNNT1
277 ENSG00000137809 1.814823464 ITGA11
278 ENSG00000242759 1.812015961 LINC00882
279 ENSG00000158321 1.784811351 AUTS2
280 ENSG00000104856 1.780951678 RELB
281 ENSG00000167994 1.778158789 RAB3IL1
282 ENSG00000166482 1.777896815 MFAP4
283 ENSG00000165379 1.769235888 LRFN5
284 ENSG00000138829 1.768396718 FBN2
285 ENSG00000091536 1.763382884 MYO15A
286 ENSG00000261247 1.760534831 GOLGA8T
287 ENSG00000159871 1.753151378 LYPD5
288 ENSG00000258057 1.750339825 BCDIN3D-AS1
289 ENSG00000141337 1.749006586 ARSG
290 ENSG00000103742 1.745113925 IGDCC4
291 ENSG00000145675 1.74040115 PIK3R1
292 ENSG00000122176 1.737285546 FMOD
293 ENSG00000254109 1.735471082 RBPMS-AS1
294 ENSG00000204991 1.726456592 SPIRE2
295 ENSG00000112149 1.723550217 CD83
296 ENSG00000137573 1.718910062 SULF1
297 ENSG00000102385 1.71638324 DRP2
298 ENSG00000123358 1.711240172 NR4A1
299 ENSG00000136231 1.701661804 IGF2BP3
300 ENSG00000196189 1.698833406 SEMA4A
301 ENSG00000235169 1.698395404 SMIM1
302 ENSG00000129951 1.697726994 PLPPR3
303 ENSG00000121577 1.696736786 POPDC2
304 ENSG00000136048 1.696574651 DRAM1
305 ENSG00000155093 1.695863189 PTPRN2
306 ENSG00000146021 1.690145464 KLHL3
307 ENSG00000138606 1.685675264 SHF
308 ENSG00000163071 1.683331706 SPATA18
309 ENSG00000182667 1.681535708 NTM
310 ENSG00000175147 1.675397396 TMEM51-AS1
311 ENSG00000131094 1.671463514 C1QL1
312 ENSG00000185950 1.671407837 IRS2
313 ENSG00000147813 1.667824825 NAPRT
314 ENSG00000248932 1.66420747 COPB2-DT
315 ENSG00000214530 1.663364842 STARD10
316 ENSG00000185551 1.661064554 NR2F2
317 ENSG00000101447 1.657930905 FAM83D
318 ENSG00000010810 1.655154361 FYN
319 ENSG00000188613 1.654322702 NANOS1
320 ENSG00000266405 1.652390581 CBX3P2
321 ENSG00000135709 1.651900323 KIAA0513
322 ENSG00000105696 1.648631374 TMEM59L
323 ENSG00000130203 1.645917049 APOE
324 ENSG00000196843 1.633503171 ARID5A
325 ENSG00000105227 1.63140042 PRX
326 ENSG00000149131 1.627990138 SERPING1
327 ENSG00000257556 1.627356063 LINC02298
328 ENSG00000154721 1.625716346 JAM2
329 ENSG00000099822 1.623752672 HCN2
330 ENSG00000184500 1.62244634 PROS1
331 ENSG00000196972 1.618142282 SMIM10L2B
332 ENSG00000151468 1.61503098 CCDC3
333 ENSG00000105464 1.614595823 GRIN2D
334 ENSG00000231160 1.612536565 KLF3-AS1
335 ENSG00000137103 1.607356621 TMEM8B
336 ENSG00000152804 1.606407263 HHEX
337 ENSG00000177406 1.604754837 NINJ2-AS1
338 ENSG00000137193 1.596972091 PIM1
339 ENSG00000064763 1.59577321 FAR2
340 ENSG00000167617 1.593511925 CDC42EP5
341 ENSG00000255052 1.592666461 FAM66D
342 ENSG00000228960 1.59238393 OR2A9P
343 ENSG00000162944 1.587186115 RFTN2
344 ENSG00000253537 1.584488009 PCDHGA7
345 ENSG00000184160 1.583566455 ADRA2C
346 ENSG00000227825 1.582312593 SLC9A7P1
347 ENSG00000130304 1.576658392 SLC27A1
348 ENSG00000182575 1.573523412 NXPH3
349 ENSG00000111961 1.571843412 SASH1
350 ENSG00000105327 1.571154429 BBC3
351 ENSG00000168405 1.570501551 CMAHP
352 ENSG00000091986 1.567946901 CCDC80
353 ENSG00000115257 1.567912566 PCSK4
354 ENSG00000130513 1.565481009 GDF15
355 ENSG00000165171 1.561243614 METTL27
356 ENSG00000105088 1.559271564 OLFM2
357 ENSG00000198885 1.55549775 ITPRIPL1
358 ENSG00000164542 1.547170796 KIAA0895
359 ENSG00000176658 1.545536167 MYO1D
360 ENSG00000105792 1.542664406 CFAP69
361 ENSG00000164099 1.54213594 PRSS12
362 ENSG00000166387 1.540636661 PPFIBP2
363 ENSG00000114698 1.535920603 PLSCR4
364 ENSG00000205978 1.532307659 NYNRIN
365 ENSG00000226278 1.530617518 PSPHP1
366 ENSG00000086991 1.528440753 NOX4
367 ENSG00000131831 1.526695735 RAI2
368 ENSG00000107562 1.52621975 CXCL12
369 ENSG00000141458 1.523071138 NPC1
370 ENSG00000172164 1.522391588 SNTB1
371 ENSG00000125965 1.521256956 GDF5
372 ENSG00000246985 1.520714773 SOCS2-AS1
373 ENSG00000147852 1.519022363 VLDLR
374 ENSG00000171877 1.517043034 FRMD5
375 ENSG00000116661 1.51618235 FBXO2
376 ENSG00000068831 1.515474863 RASGRP2
377 ENSG00000142156 1.514396814 COL6A1
378 ENSG00000233297 1.514139138 RASA4DP
379 ENSG00000064989 1.512822057 CALCRL
380 ENSG00000182218 1.512646505 HHIPL1
381 ENSG00000198270 1.512176831 TMEM116
382 ENSG00000143382 1.508260028 ADAMTSL4
383 ENSG00000104883 1.507314695 PEX11G
384 ENSG00000205309 1.507255711 NT5M
385 ENSG00000077942 1.506829199 FBLN1
386 ENSG00000246174 1.502096816 KCTD21-AS1
387 ENSG00000173262 1.501298345 SLC2A14

 List of mRNAs and LINCRNAs overexpressed in cancer associated fibroblasts as compared to normal fibroblasts. The list shows the GeneID, relative fold change values (Log2FC), and gene symbol

Table 2.

List of underexpressed mRNAs and LINCRNAs in cancer-associated fibroblasts compared to normal fibroblasts

Sl No Gene ID Log2FC Symbol
1 ENSG00000164093 -6.244899052 PITX2
2 ENSG00000110693 -5.381564985 SOX6
3 ENSG00000171246 -4.942383728 NPTX1
4 ENSG00000206432 -4.86079173 TMEM200C
5 ENSG00000241213 -4.692994122 LINC02024
6 ENSG00000189057 -4.682640569 FAM111B
7 ENSG00000186493 -4.5887501 C5orf38
8 ENSG00000170561 -4.489265562 IRX2
9 ENSG00000065328 -4.416019329 MCM10
10 ENSG00000213412 -4.299519526 HNRNPA1P33
11 ENSG00000277775 -4.280564426 H3C7
12 ENSG00000102755 -4.232129614 FLT1
13 ENSG00000171848 -4.211927711 RRM2
14 ENSG00000117525 -4.152266428 F3
15 ENSG00000129173 -4.071649074 E2F8
16 ENSG00000093009 -3.993665744 CDC45
17 ENSG00000111816 -3.972942656 FRK
18 ENSG00000148773 -3.972536202 MKI67
19 ENSG00000174371 -3.960698368 EXO1
20 ENSG00000109805 -3.956700161 NCAPG
21 ENSG00000007968 -3.919560667 E2F2
22 ENSG00000176049 -3.896811197 JAKMIP2
23 ENSG00000109272 -3.8826734 PF4V1
24 ENSG00000169607 -3.856035805 CKAP2L
25 ENSG00000072571 -3.853814872 HMMR
26 ENSG00000151150 -3.845533978 ANK3
27 ENSG00000131153 -3.815504744 GINS2
28 ENSG00000137812 -3.757294903 KNL1
29 ENSG00000122952 -3.742224789 ZWINT
30 ENSG00000166803 -3.696740654 PCLAF
31 ENSG00000286522 -3.665033009 H3C2
32 ENSG00000203811 -3.649365262 H3C14
33 ENSG00000203852 -3.645437574 H3C15
34 ENSG00000092853 -3.613728714 CLSPN
35 ENSG00000112984 -3.590191849 KIF20A
36 ENSG00000171241 -3.583589781 SHCBP1
37 ENSG00000121152 -3.583173772 NCAPH
38 ENSG00000143476 -3.558596552 DTL
39 ENSG00000152936 -3.557494062 LMNTD1
40 ENSG00000165244 -3.557493273 ZNF367
41 ENSG00000165490 -3.538556887 DDIAS
42 ENSG00000237649 -3.53147714 KIFC1
43 ENSG00000278048 -3.530960644 U2
44 ENSG00000158402 -3.511625284 CDC25C
45 ENSG00000105011 -3.506471129 ASF1B
46 ENSG00000140534 -3.501930836 TICRR
47 ENSG00000138180 -3.497178172 CEP55
48 ENSG00000134690 -3.487940972 CDCA8
49 ENSG00000118193 -3.487807903 KIF14
50 ENSG00000163638 -3.463794075 ADAMTS9
51 ENSG00000117724 -3.460261143 CENPF
52 ENSG00000183598 -3.4355466 H3C13
53 ENSG00000075218 -3.43277683 GTSE1
54 ENSG00000166851 -3.413367724 PLK1
55 ENSG00000123485 -3.395070088 HJURP
56 ENSG00000011426 -3.392069201 ANLN
57 ENSG00000090889 -3.389812639 KIF4A
58 ENSG00000085840 -3.38031696 ORC1
59 ENSG00000163808 -3.374288656 KIF15
60 ENSG00000138185 -3.373426081 ENTPD1
61 ENSG00000142945 -3.330213652 KIF2C
62 ENSG00000238297 -3.323221421 U3
63 ENSG00000068078 -3.315141798 FGFR3
64 ENSG00000117399 -3.31378088 CDC20
65 ENSG00000112742 -3.310189708 TTK
66 ENSG00000170312 -3.308358731 CDK1
67 ENSG00000171320 -3.306520946 ESCO2
68 ENSG00000146670 -3.297527548 CDCA5
69 ENSG00000145386 -3.282458069 CCNA2
70 ENSG00000166670 -3.278837829 MMP10
71 ENSG00000197565 -3.264304177 COL4A6
72 ENSG00000089685 -3.2634763 BIRC5
73 ENSG00000168078 -3.251635481 PBK
74 ENSG00000183856 -3.236451775 IQGAP3
75 ENSG00000145681 -3.235820469 HAPLN1
76 ENSG00000109072 -3.229022684 VTN
77 ENSG00000273703 -3.228440353 H2BC14
78 ENSG00000066279 -3.224990555 ASPM
79 ENSG00000184357 -3.215486063 H1-5
80 ENSG00000197299 -3.203543875 BLM
81 ENSG00000100162 -3.202097229 CENPM
82 ENSG00000175305 -3.179881376 CCNE2
83 ENSG00000075702 -3.177596664 WDR62
84 ENSG00000011332 -3.169273735 DPF1
85 ENSG00000196584 -3.158286898 XRCC2
86 ENSG00000276368 -3.147207462 H2AC14
87 ENSG00000134057 -3.146004943 CCNB1
88 ENSG00000173320 -3.143419433 STOX2
89 ENSG00000213967 -3.137208731 ZNF726
90 ENSG00000094804 -3.131644437 CDC6
91 ENSG00000228065 -3.120855365 LINC01515
92 ENSG00000051341 -3.118355075 POLQ
93 ENSG00000128713 -3.100005442 HOXD11
94 ENSG00000131747 -3.09069934 TOP2A
95 ENSG00000150551 -3.082272486 LYPD1
96 ENSG00000184661 -3.067972849 CDCA2
97 ENSG00000157456 -3.063797851 CCNB2
98 ENSG00000281344 -3.063460876 HELLPAR
99 ENSG00000142731 -3.063276977 PLK4
100 ENSG00000111665 -3.060335172 CDCA3
101 ENSG00000087586 -3.042747952 AURKA
102 ENSG00000055813 -3.03369872 CCDC85A
103 ENSG00000164303 -3.027403057 ENPP6
104 ENSG00000058866 -3.027090567 DGKG
105 ENSG00000275713 -3.024102577 H2BC9
106 ENSG00000151725 -3.020026322 CENPU
107 ENSG00000196747 -3.007422105 H2AC13
108 ENSG00000276043 -3.005041466 UHRF1
109 ENSG00000166292 -2.99208271 TMEM100
110 ENSG00000241322 -2.984502753 CDRT1
111 ENSG00000111247 -2.983780538 RAD51AP1
112 ENSG00000129195 -2.977832945 PIMREG
113 ENSG00000135451 -2.970340448 TROAP
114 ENSG00000120149 -2.970262942 MSX2
115 ENSG00000164045 -2.958067112 CDC25A
116 ENSG00000076382 -2.950383677 SPAG5
117 ENSG00000009694 -2.94033935 TENM1
118 ENSG00000170160 -2.934268013 CCDC144A
119 ENSG00000287080 -2.929684086 H3C3
120 ENSG00000169679 -2.911200736 BUB1
121 ENSG00000227145 -2.902745099 IL21-AS1
122 ENSG00000127423 -2.89847034 AUNIP
123 ENSG00000101412 -2.892510405 E2F1
124 ENSG00000146410 -2.866283497 MTFR2
125 ENSG00000154920 -2.857083834 EME1
126 ENSG00000068489 -2.845006407 PRR11
127 ENSG00000274641 -2.842803264 H2BC17
128 ENSG00000183850 -2.818220455 ZNF730
129 ENSG00000276410 -2.814513008 H2BC3
130 ENSG00000261618 -2.811451265 LINC02605
131 ENSG00000013810 -2.805846132 TACC3
132 ENSG00000285294 -2.799537368 LINC00842
133 ENSG00000100583 -2.789283935 SAMD15
134 ENSG00000103522 -2.776203635 IL21R
135 ENSG00000163293 -2.761734242 NIPAL1
136 ENSG00000138778 -2.749900931 CENPE
137 ENSG00000185008 -2.739539975 ROBO2
138 ENSG00000164379 -2.732731209 FOXQ1
139 ENSG00000167513 -2.728991813 CDT1
140 ENSG00000137310 -2.728793599 TCF19
141 ENSG00000144278 -2.719986041 GALNT13
142 ENSG00000277224 -2.717203571 H2BC7
143 ENSG00000111206 -2.706187922 FOXM1
144 ENSG00000128656 -2.701917579 CHN1
145 ENSG00000240809 -2.637140463 CAP1P1
146 ENSG00000265190 -2.628615159 ANXA8
147 ENSG00000102384 -2.627033976 CENPI
148 ENSG00000113368 -2.621078132 LMNB1
149 ENSG00000276903 -2.601525749 H2AC16
150 ENSG00000226953 -2.595177536 NCKAP5-AS2
151 ENSG00000110900 -2.590720608 TSPAN11
152 ENSG00000197385 -2.580835912 ZNF860
153 ENSG00000180875 -2.579367873 GREM2
154 ENSG00000122966 -2.568012417 CIT
155 ENSG00000138669 -2.560074549 PRKG2
156 ENSG00000167900 -2.558677147 TK1
157 ENSG00000138160 -2.553197127 KIF11
158 ENSG00000134516 -2.552103309 DOCK2
159 ENSG00000144554 -2.55141711 FANCD2
160 ENSG00000275126 -2.55107583 H4C13
161 ENSG00000160223 -2.533341384 ICOSLG
162 ENSG00000165084 -2.532201212 C8orf34
163 ENSG00000222898 -2.531267474 RN7SKP97
164 ENSG00000071539 -2.527860312 TRIP13
165 ENSG00000162062 -2.52734652 TEDC2
166 ENSG00000117600 -2.513999972 PLPPR4
167 ENSG00000138182 -2.505030881 KIF20B
168 ENSG00000080986 -2.502549503 NDC80
169 ENSG00000176208 -2.49026074 ATAD5
170 ENSG00000165891 -2.482123055 E2F7
171 ENSG00000186638 -2.46529789 KIF24
172 ENSG00000088756 -2.458646519 ARHGAP28
173 ENSG00000215784 -2.451244682 FAM72D
174 ENSG00000179750 -2.433420816 APOBEC3B
175 ENSG00000186310 -2.432964986 NAP1L3
176 ENSG00000162383 -2.431717139 SLC1A7
177 ENSG00000167600 -2.424938393 CYP2S1
178 ENSG00000154839 -2.424822921 SKA1
179 ENSG00000101003 -2.422973689 GINS1
180 ENSG00000263513 -2.413532558 FAM72C
181 ENSG00000164109 -2.410394716 MAD2L1
182 ENSG00000184374 -2.406516904 COLEC10
183 ENSG00000088325 -2.405096136 TPX2
184 ENSG00000275591 -2.397269203 XKR5
185 ENSG00000264230 -2.396476922 ANXA8L1
186 ENSG00000109674 -2.383348062 NEIL3
187 ENSG00000124882 -2.381427676 EREG
188 ENSG00000123219 -2.373815709 CENPK
189 ENSG00000179219 -2.371344708 LINC00311
190 ENSG00000121904 -2.371312009 CSMD2
191 ENSG00000128052 -2.369999586 KDR
192 ENSG00000120594 -2.368417063 PLXDC2
193 ENSG00000230300 -2.366705146 STARD13-IT1
194 ENSG00000278588 -2.366083657 H2BC10
195 ENSG00000188662 -2.360625481 H1-9P
196 ENSG00000187741 -2.359151573 FANCA
197 ENSG00000162654 -2.358912627 GBP4
198 ENSG00000250853 -2.34035427 RNF138P1
199 ENSG00000248228 -2.324670799 SLIT2-IT1
200 ENSG00000135476 -2.32046519 ESPL1
201 ENSG00000185697 -2.316698718 MYBL1
202 ENSG00000171517 -2.316431745 LPAR3
203 ENSG00000166451 -2.308405325 CENPN
204 ENSG00000184571 -2.302100309 PIWIL3
205 ENSG00000179071 -2.298141854 CCDC89
206 ENSG00000161888 -2.296025131 SPC24
207 ENSG00000227911 -2.269397065 LINC02344
208 ENSG00000117461 -2.26639294 PIK3R3
209 ENSG00000187796 -2.266276673 CARD9
210 ENSG00000164850 -2.26346959 GPER1
211 ENSG00000100479 -2.263305406 POLE2
212 ENSG00000236532 -2.262159728 LINC01695
213 ENSG00000104368 -2.261503355 PLAT
214 ENSG00000112852 -2.255468306 PCDHB2
215 ENSG00000137807 -2.254277149 KIF23
216 ENSG00000144395 -2.252773294 CCDC150
217 ENSG00000152056 -2.244603112 AP1S3
218 ENSG00000183762 -2.234862927 KREMEN1
219 ENSG00000064042 -2.233728432 LIMCH1
220 ENSG00000100526 -2.226118872 CDKN3
221 ENSG00000207597 -2.215978624 MIR490
222 ENSG00000124635 -2.214462467 H2BC11
223 ENSG00000196081 -2.207624252 ZNF724
224 ENSG00000133119 -2.204999878 RFC3
225 ENSG00000012048 -2.203512532 BRCA1
226 ENSG00000278828 -2.197741828 H3C10
227 ENSG00000160957 -2.18914984 RECQL4
228 ENSG00000188610 -2.174967519 FAM72B
229 ENSG00000164087 -2.157773664 POC1A
230 ENSG00000147536 -2.154684112 GINS4
231 ENSG00000236824 -2.154204019 BCYRN1
232 ENSG00000073111 -2.152293569 MCM2
233 ENSG00000107984 -2.137106037 DKK1
234 ENSG00000272674 -2.122271421 PCDHB16
235 ENSG00000163535 -2.122050767 SGO2
236 ENSG00000187583 -2.103701739 PLEKHN1
237 ENSG00000149968 -2.090233185 MMP3
238 ENSG00000161800 -2.088807861 RACGAP1
239 ENSG00000162063 -2.083000456 CCNF
240 ENSG00000216819 -2.070905578 TUBB2BP1
241 ENSG00000234383 -2.070115996 CTBP2P8
242 ENSG00000164611 -2.062477973 PTTG1
243 ENSG00000169247 -2.060263012 SH3TC2
244 ENSG00000163507 -2.058945689 CIP2A
245 ENSG00000183763 -2.05764095 TRAIP
246 ENSG00000137135 -2.048019992 ARHGEF39
247 ENSG00000168496 -2.03889776 FEN1
248 ENSG00000204176 -2.034676644 SYT15
249 ENSG00000144476 -2.028952615 ACKR3
250 ENSG00000139618 -2.026828243 BRCA2
251 ENSG00000229989 -2.016615466 MIR181A1HG
252 ENSG00000248019 -2.004491042 FAM13A-AS1
253 ENSG00000004139 -2.003314083 SARM1
254 ENSG00000240891 -2.003055186 PLCXD2
255 ENSG00000274290 -1.998795168 H2BC6
256 ENSG00000198692 -1.99256031 EIF1AY
257 ENSG00000104147 -1.988069738 OIP5
258 ENSG00000274997 -1.984906449 H2AC12
259 ENSG00000137267 -1.984524033 TUBB2A
260 ENSG00000185760 -1.982236088 KCNQ5
261 ENSG00000247498 -1.981575492 GPRC5D-AS1
262 ENSG00000012504 -1.980799777 NR1H4
263 ENSG00000285077 -1.973914944 ARHGAP11B
264 ENSG00000135480 -1.973232661 KRT7
265 ENSG00000144596 -1.96748205 GRIP2
266 ENSG00000196787 -1.96740556 H2AC11
267 ENSG00000091651 -1.96729841 ORC6
268 ENSG00000131002 -1.967122587 TXLNGY
269 ENSG00000145861 -1.964234961 C1QTNF2
270 ENSG00000248909 -1.962396435 HMGB1P21
271 ENSG00000163491 -1.955677642 NEK10
272 ENSG00000196550 -1.950290978 FAM72A
273 ENSG00000136122 -1.950251078 BORA
274 ENSG00000002746 -1.94138728 HECW1
275 ENSG00000106537 -1.940201039 TSPAN13
276 ENSG00000112029 -1.93283442 FBXO5
277 ENSG00000051180 -1.932410512 RAD51
278 ENSG00000100297 -1.92766499 MCM5
279 ENSG00000231672 -1.922759998 DIRC3
280 ENSG00000281641 -1.919964204 SAMD12-AS1
281 ENSG00000079616 -1.912111909 KIF22
282 ENSG00000231566 -1.910488729 LINC02595
283 ENSG00000131470 -1.908189689 PSMC3IP
284 ENSG00000123473 -1.899760576 STIL
285 ENSG00000171408 -1.89840943 PDE7B
286 ENSG00000170624 -1.893532203 SGCD
287 ENSG00000214391 -1.88992187 TUBAP2
288 ENSG00000197275 -1.883502038 RAD54B
289 ENSG00000184988 -1.882777859 TMEM106A
290 ENSG00000111057 -1.871847275 KRT18
291 ENSG00000160229 -1.870820281 ZNF66
292 ENSG00000230417 -1.864206963 LINC00595
293 ENSG00000277075 -1.862953731 H2AC8
294 ENSG00000214826 -1.86155004 DDX12P
295 ENSG00000168675 -1.859533634 LDLRAD4
296 ENSG00000136492 -1.856840499 BRIP1
297 ENSG00000134007 -1.855147363 ADAM20
298 ENSG00000168389 -1.840331218 MFSD2A
299 ENSG00000124575 -1.839002223 H1-3
300 ENSG00000144583 -1.838682115 MARCHF4
301 ENSG00000040275 -1.83690946 SPDL1
302 ENSG00000258947 -1.835374336 TUBB3
303 ENSG00000274210 -1.834128746 RNVU1-27
304 ENSG00000164251 -1.833060737 F2RL1
305 ENSG00000077152 -1.828725777 UBE2T
306 ENSG00000100739 -1.828412728 BDKRB1
307 ENSG00000146006 -1.826278356 LRRTM2
308 ENSG00000149548 -1.825503232 CCDC15
309 ENSG00000157193 -1.817142483 LRP8
310 ENSG00000173894 -1.810408037 CBX2
311 ENSG00000137285 -1.808867329 TUBB2B
312 ENSG00000125637 -1.808350388 PSD4
313 ENSG00000158769 -1.806788653 F11R
314 ENSG00000091409 -1.797159103 ITGA6
315 ENSG00000122378 -1.795265991 PRXL2A
316 ENSG00000160949 -1.795003337 TONSL
317 ENSG00000259571 -1.794121641 BLID
318 ENSG00000013573 -1.783801829 DDX11
319 ENSG00000067646 -1.781317817 ZFY
320 ENSG00000228485 -1.77609442 GRK5-IT1
321 ENSG00000185130 -1.775345169 H2BC13
322 ENSG00000135119 -1.774610837 RNFT2
323 ENSG00000168961 -1.770421979 LGALS9
324 ENSG00000167553 -1.769893028 TUBA1C
325 ENSG00000136108 -1.767305561 CKAP2
326 ENSG00000275221 -1.755721524 H2AC15
327 ENSG00000138772 -1.755464656 ANXA3
328 ENSG00000257167 -1.755365934 TMPO-AS1
329 ENSG00000119969 -1.75451338 HELLS
330 ENSG00000166396 -1.748843248 SERPINB7
331 ENSG00000113070 -1.7485423 HBEGF
332 ENSG00000253669 -1.74727492 GASAL1
333 ENSG00000203668 -1.74710226 CHML
334 ENSG00000121621 -1.746743236 KIF18A
335 ENSG00000143942 -1.742138349 CHAC2
336 ENSG00000123416 -1.741078217 TUBA1B
337 ENSG00000178718 -1.738739341 RPP25
338 ENSG00000135333 -1.737844738 EPHA7
339 ENSG00000127586 -1.737108616 CHTF18
340 ENSG00000182481 -1.732656694 KPNA2
341 ENSG00000138092 -1.727166693 CENPO
342 ENSG00000135111 -1.726943068 TBX3
343 ENSG00000003137 -1.726195132 CYP26B1
344 ENSG00000050438 -1.72618536 SLC4A8
345 ENSG00000104738 -1.725725954 MCM4
346 ENSG00000224080 -1.725379805 UBE2FP1
347 ENSG00000143248 -1.724632404 RGS5
348 ENSG00000181938 -1.72455685 GINS3
349 ENSG00000278463 -1.724423695 H2AC4
350 ENSG00000273802 -1.719926453 H2BC8
351 ENSG00000272610 -1.718830162 MAGI1-IT1
352 ENSG00000276180 -1.715080282 H4C9
353 ENSG00000080493 -1.711929929 SLC4A4
354 ENSG00000146918 -1.7111589 NCAPG2
355 ENSG00000125968 -1.706827003 ID1
356 ENSG00000165304 -1.706565279 MELK
357 ENSG00000093072 -1.705766917 ADA2
358 ENSG00000000460 -1.704399842 C1orf112
359 ENSG00000203814 -1.700700847 H2BC18
360 ENSG00000188229 -1.700547122 TUBB4B
361 ENSG00000182010 -1.693661881 RTKN2
362 ENSG00000203772 -1.693224918 SPRN
363 ENSG00000228716 -1.692307878 DHFR
364 ENSG00000233695 -1.683313672 GAS6-AS1
365 ENSG00000240583 -1.681814582 AQP1
366 ENSG00000226887 -1.680658527 ERVMER34-1
367 ENSG00000162981 -1.680244743 LRATD1
368 ENSG00000155754 -1.674128704 C2CD6
369 ENSG00000187764 -1.671707352 SEMA4D
370 ENSG00000144354 -1.666069051 CDCA7
371 ENSG00000140525 -1.665511953 FANCI
372 ENSG00000198826 -1.662405338 ARHGAP11A
373 ENSG00000114374 -1.66111163 USP9Y
374 ENSG00000115687 -1.660913272 PASK
375 ENSG00000138641 -1.65658816 HERC3
376 ENSG00000225479 -1.650007239 PLCB1-IT1
377 ENSG00000171227 -1.648342861 TMEM37
378 ENSG00000069011 -1.646996033 PITX1
379 ENSG00000189423 -1.645504091 USP32P3
380 ENSG00000106018 -1.644722116 VIPR2
381 ENSG00000125885 -1.643965568 MCM8
382 ENSG00000108106 -1.641794507 UBE2S
383 ENSG00000116741 -1.640261558 RGS2
384 ENSG00000019582 -1.637655701 CD74
385 ENSG00000128944 -1.631589834 KNSTRN
386 ENSG00000205085 -1.629799155 FAM71F2
387 ENSG00000213551 -1.629540955 DNAJC9
388 ENSG00000197646 -1.628944055 PDCD1LG2
389 ENSG00000284770 -1.6281093 TBCE
390 ENSG00000175592 -1.627413319 FOSL1
391 ENSG00000169255 -1.626377071 B3GALNT1
392 ENSG00000256940 -1.624938759 PPP1R14B-AS1
393 ENSG00000092470 -1.624777727 WDR76
394 ENSG00000170396 -1.62145823 ZNF804A
395 ENSG00000157150 -1.621389149 TIMP4
396 ENSG00000180998 -1.620767241 GPR137C
397 ENSG00000164342 -1.61063564 TLR3
398 ENSG00000185347 -1.608083729 TEDC1
399 ENSG00000185480 -1.601104078 PARPBP
400 ENSG00000128266 -1.600461913 GNAZ
401 ENSG00000138741 -1.600042092 TRPC3
402 ENSG00000184524 -1.599335578 CEND1
403 ENSG00000101945 -1.599239127 SUV39H1
404 ENSG00000167670 -1.597489348 CHAF1A
405 ENSG00000120645 -1.595159204 IQSEC3
406 ENSG00000274618 -1.592827393 H4C6
407 ENSG00000166845 -1.586194556 C18orf54
408 ENSG00000171951 -1.584038434 SCG2
409 ENSG00000230397 -1.577283347 SPTLC1P1
410 ENSG00000236397 -1.570378467 DDX11L2
411 ENSG00000279094 -1.568089067 LINC01670
412 ENSG00000161692 -1.564584462 DBF4B
413 ENSG00000154898 -1.564062897 CCDC144CP
414 ENSG00000113805 -1.563519837 CNTN3
415 ENSG00000156968 -1.563032371 MPV17L
416 ENSG00000138658 -1.561650456 ZGRF1
417 ENSG00000153956 -1.559769347 CACNA2D1
418 ENSG00000072201 -1.556754524 LNX1
419 ENSG00000184635 -1.554031763 ZNF93
420 ENSG00000076706 -1.550103307 MCAM
421 ENSG00000253919 -1.547621411 THAP12P7
422 ENSG00000117632 -1.546633613 STMN1
423 ENSG00000169116 -1.545012275 PARM1
424 ENSG00000134198 -1.54426042 TSPAN2
425 ENSG00000145022 -1.540861873 TCTA
426 ENSG00000137872 -1.538495127 SEMA6D
427 ENSG00000151718 -1.538300366 WWC2
428 ENSG00000248483 -1.536573033 POU5F2
429 ENSG00000279078 -1.53537251 SND1-IT1
430 ENSG00000275714 -1.535151777 H3C1
431 ENSG00000054277 -1.534516353 OPN3
432 ENSG00000228817 -1.532377146 BACH1-IT2
433 ENSG00000106462 -1.530310813 EZH2
434 ENSG00000152953 -1.529327592 STK32B
435 ENSG00000084710 -1.526437542 EFR3B
436 ENSG00000183878 -1.526148211 UTY
437 ENSG00000164619 -1.522526665 BMPER
438 ENSG00000145569 -1.522204027 OTULINL
439 ENSG00000124610 -1.517949223 H1-1
440 ENSG00000196118 -1.512333496 CCDC189
441 ENSG00000126215 -1.510389055 XRCC3
442 ENSG00000233966 -1.509072823 UBE2SP1
443 ENSG00000154127 -1.508168812 UBASH3B
444 ENSG00000176225 -1.505171168 RTTN
445 ENSG00000166446 -1.504994005 CDYL2
446 ENSG00000270276 -1.503539737 H4C15
447 ENSG00000128536 -1.50202659 CDHR3
448 ENSG00000041353 -1.501903367 RAB27B

List of mRNAs and LINCRNAs under-expressed in cancer-associated fibroblasts as compared to normal fibroblasts. The list shows the GeneID, relative fold change values (Log2FC), and gene symbol

qRT-PCR analysis of selected genes

Few genes from the differentially expressed gene list were selected for validation by qRT-PCR. Table 3 shows the list of genes that have been validated along with the fold changes. In the genes that have been validated, data from RNA-seq and qRT-PCR show the same pattern although fold changes are different.

Table 3.

Selected genes validated by qRT-PCR

Gene symbol Log2FC (RNA-seq) Average FC in qRT-PCR with S.D
SFRP4 7.457728693 35.45 ± 6.46
DEPP1 6.8004577 48.37 ± 3.134
GDF6 5.080737946 58.09 ± 4.793
NPR1 4.968358544 42.38 ± 4.161
LINC00842 -2.799537368 0.023 ± 0.003

List of differentially expressed genes validated by qRT-PCR. The list shows the Gene symbol, fold change with respect to control  in RNA-seq and fold change with respect to control in qRT-PCR

LINCRNA target prediction using npinter v5.0

LincRNA targets were predicted for differentially expressed lincRNAs in normal compared to CAFs using NP Inter V5.0. This analysis yielded 263 RNA-binding proteins (RBPs) (Table 4), 31 microRNAs (miRNAs), 1 non-coding (ncRNA) (Table 5) and 2 messenger RNA (mRNA) (Table 6) associated with a total of 14 lincRNAs. Also, there were 3 novel lincRNAs (LINC02344, LINC01670, and LINC02605) for which no data was found in the above database.

Table 4.

List of LINCRNAs interacting with proteins

NON CODE/ ENSEMBL ID LINCRNA Interacting Component UniProt ID Type
NONHSAG010513 LINC01252 IGF2BP3 O00425 protein
NONHSAG010513 LINC01252 SOX2 P48431 protein
NONHSAG010513 LINC01252 IGF2BP1 Q9NZI8 protein
NONHSAG010513 LINC01252 AGO2 Q9UKV8 protein
ENSG00000163364 LINC01116 ZC3HAV1 Q7Z2W4 protein
ENSG00000163364 LINC01116 IGF2BP3 O00425 protein
ENSG00000163364 LINC01116 CRNKL1 Q9BZJ0 protein
ENSG00000163364 LINC01116 IGF2BP1 Q9NZI8 protein
ENSG00000163364 LINC01116 DHX36 Q9H2U1 protein
ENSG00000163364 LINC01116 EZH2 A0A090N8E9 protein
ENSG00000223485 LINC01615 IGF2BP3 O00425 protein
NONHSAG099482 LINC01301 A1CF Q9NQ94 protein
NONHSAG099482 LINC01301 A1CF Q9NQ94 protein
NONHSAG099482 LINC01301 TRIM25 Q14258 protein
NONHSAG099482 LINC01301 ZC3HAV1 Q7Z2W4 protein
NONHSAG099482 LINC01301 ZMAT3 Q9HA38 protein
NONHSAG099482 LINC01301 ZMAT3 Q9HA38 protein
NONHSAG099482 LINC01301 SP1 P08047 protein
NONHSAG099482 LINC01301 IGF2BP3 O00425 protein
NONHSAG099482 LINC01301 RBMX P38159 protein
NONHSAG099482 LINC01301 SOX2 P48431 protein
NONHSAG099482 LINC01301 U2AF1 Q01081 protein
NONHSAG099482 LINC01301 ILF2 Q12905 protein
NONHSAG099482 LINC01301 IGF2BP1 Q9NZI8 protein
NONHSAG099482 LINC01301 AGO2 Q9UKV8 protein
NONHSAG099482 LINC01301 DHX36 Q9H2U1 protein
NONHSAG099482 LINC01301 DHX36 Q9H2U1 protein
NONHSAG016089 LINC02298 DMD A0A075B6G3 protein
NONHSAG016089 LINC02298 TRIM25 Q14258 protein
NONHSAG016089 LINC02298 IGF2BP3 O00425 protein
NONHSAG016089 LINC02298 SOX2 P48431 protein
NONHSAG016089 LINC02298 IGF2BP1 Q9NZI8 protein
NONHSAG016089 LINC02298 DHX36 Q9H2U1 protein
NONHSAG035677 LINC00882 A1CF Q9NQ94 protein
NONHSAG035677 LINC00882 A1CF Q9NQ94 protein
NONHSAG035677 LINC00882 FUBP1 Q96AE4 protein
NONHSAG035677 LINC00882 KHDRBS2 Q5VWX1 protein
NONHSAG035677 LINC00882 PUS10 Q3MIT2 protein
NONHSAG035677 LINC00882 TRIM25 Q14258 protein
NONHSAG035677 LINC00882 ZC3HAV1 Q7Z2W4 protein
NONHSAG035677 LINC00882 ZMAT3 Q9HA38 protein
NONHSAG035677 LINC00882 ZMAT3 Q9HA38 protein
NONHSAG035677 LINC00882 SP1 P08047 protein
NONHSAG035677 LINC00882 WDR4 P57081 protein
NONHSAG035677 LINC00882 SRSF1 Q07955 protein
NONHSAG035677 LINC00882 IGF2BP3 O00425 protein
NONHSAG035677 LINC00882 RBMX P38159 protein
NONHSAG035677 LINC00882 SOX2 P48431 protein
NONHSAG035677 LINC00882 HNRNPM P52272 protein
NONHSAG035677 LINC00882 U2AF1 Q01081 protein
NONHSAG035677 LINC00882 ILF2 Q12905 protein
NONHSAG035677 LINC00882 ELAVL1 Q15717 protein
NONHSAG035677 LINC00882 KHSRP Q92945 protein
NONHSAG035677 LINC00882 CRNKL1 Q9BZJ0 protein
NONHSAG035677 LINC00882 IGF2BP1 Q9NZI8 protein
NONHSAG035677 LINC00882 AGO2 Q9UKV8 protein
NONHSAG035677 LINC00882 AGO2 Q9UKV8 protein
NONHSAG035677 LINC00882 DHX36 Q9H2U1 protein
NONHSAG035677 LINC00882 DHX36 Q9H2U1 protein
NONHSAG035677 LINC00882 Rbfox1 Q9NWB1 protein
ENSG00000228221 LINC00578 KHDRBS2 Q5VWX1 protein
ENSG00000228221 LINC00578 PUS10 Q3MIT2 protein
ENSG00000228221 LINC00578 TRIM25 Q14258 protein
ENSG00000228221 LINC00578 USF2 Q15853 protein
ENSG00000228221 LINC00578 ZC3HAV1 Q7Z2W4 protein
ENSG00000228221 LINC00578 ZMAT3 Q9HA38 protein
ENSG00000228221 LINC00578 ZMAT3 Q9HA38 protein
ENSG00000228221 LINC00578 SP1 P08047 protein
ENSG00000228221 LINC00578 CPSF1 Q10570 protein
ENSG00000228221 LINC00578 IGF2BP3 O00425 protein
ENSG00000228221 LINC00578 SOX2 P48431 protein
ENSG00000228221 LINC00578 CPSF7 Q8N684 protein
ENSG00000228221 LINC00578 CRNKL1 Q9BZJ0 protein
ENSG00000228221 LINC00578 IGF2BP1 Q9NZI8 protein
ENSG00000228221 LINC00578 AGO2 Q9UKV8 protein
ENSG00000228221 LINC00578 AGO2 Q9UKV8 protein
ENSG00000228221 LINC00578 AGO2 Q9UKV8 protein
ENSG00000228221 LINC00578 PTBP1 P26599 protein
ENSG00000228221 LINC00578 DHX36 Q9H2U1 protein
ENSG00000228221 LINC00578 DHX36 Q9H2U1 protein
NONHSAG036724 LINC00578 ADAR P55265 protein
NONHSAG036724 LINC00578 WDR33 Q9C0J8 protein
NONHSAG036724 LINC00578 TARBP2 Q15633 protein
NONHSAG036724 LINC00578 RBM6 P78332 protein
NONHSAG036724 LINC00578 RBM10 P98175 protein
NONHSAG036724 LINC00578 UPF1 Q92900 protein
NONHSAG036724 LINC00578 hnRNPA2B1 O88569 protein
NONHSAG036724 LINC00578 FUS P35637 protein
NONHSAG036727 LINC00578 HNRNPU Q00839 protein
NONHSAG036727 LINC00578 DDX3X O00571 protein
NONHSAG036727 LINC00578 EIF2C1 Q9UL18 protein
NONHSAG036727 LINC00578 AGO2 Q9UKV8 protein
NONHSAG036727 LINC00578 AGO3 Q9H9G7 protein
NONHSAG036727 LINC00578 AGO4 Q9HCK5 protein
NONHSAG036727 LINC00578 MBNL2 Q5VZF2 protein
NONHSAG036727 LINC00578 MOV10 P22626 protein
NONHSAG036727 LINC00578 SPPL3 Q8TCT6 protein
NONHSAG036727 LINC00578 HNRPG P38159 protein
NONHSAG036727 LINC00578 YTDC1 Q96MU7 protein
NONHSAG036727 LINC00578 MBNL1 Q9NR56 protein
NONHSAG036727 LINC00578 FBL P22087 protein
NONHSAG036727 LINC00578 RNMT O43148 protein
NONHSAG036727 LINC00578 DBHS Q15233 protein
NONHSAG036727 LINC00578 PSF P23246 protein
NONHSAG036727 LINC00578 HDAC9 Q9UKV0 protein
NONHSAG036727 LINC00578 SMARCA4 P51532 protein
NONHSAG036727 LINC00578 SSB P05455 protein
NONHSAG036727 LINC00578 EWSR1 Q01844 protein
ENSG00000231566 LINC02595 DCP1B Q8IZD4 protein
ENSG00000231566 LINC02595 FUBP1 Q96AE4 protein
ENSG00000231566 LINC02595 TRIM25 Q14258 protein
ENSG00000231566 LINC02595 ZMAT3 Q9HA38 protein
ENSG00000231566 LINC02595 DDX6 P26196 protein
ENSG00000231566 LINC02595 AGO1 Q9UL18 protein
ENSG00000231566 LINC02595 FUS P35637 protein
ENSG00000231566 LINC02595 EWSR1 Q01844 protein
ENSG00000231566 LINC02595 TIA1 P31483 protein
ENSG00000231566 LINC02595 RBMX P38159 protein
ENSG00000231566 LINC02595 ILF2 Q12905 protein
ENSG00000231566 LINC02595 YTHDF2 Q9Y5A9 protein
ENSG00000231566 LINC02595 FUBP3 Q96I24 protein
ENSG00000231566 LINC02595 DHX36 Q9H2U1 protein
ENSG00000231566 LINC02595 DHX36 Q9H2U1 protein
ENSG00000231566 LINC02595 Rbfox1 Q9NWB1 protein
NONHSAG006313 LINC00595 WDR33 Q9C0J8 protein
NONHSAG006313 LINC00595 RTCB Q9Y3I0 protein
NONHSAG006313 LINC00595 RBM6 P78332 protein
NONHSAG006313 LINC00595 RBM10 P98175 protein
NONHSAG006313 LINC00595 UPF1 Q92900 protein
NONHSAG006313 LINC00595 hnRNPA2B1 O88569 protein
NONHSAG006313 LINC00595 FUS P35637 protein
NONHSAG060614 LINC00595 EIF2C1 Q9UL18 protein
NONHSAG060614 LINC00595 AGO2 Q9UKV8 protein
NONHSAG060614 LINC00595 AGO3 Q9H9G7 protein
NONHSAG060614 LINC00595 AGO4 Q9HCK5 protein
NONHSAG060614 LINC00595 MBNL2 Q5VZF2 protein
NONHSAG060614 LINC00595 MOV10 P22626 protein
NONHSAG060614 LINC00595 FBL P22087 protein
NONHSAG060614 LINC00595 RBFOX2 O43251 protein
NONHSAG060614 LINC00595 DBHS Q15233 protein
NONHSAG060614 LINC00595 PSF P23246 protein
NONHSAG060614 LINC00595 TRIM25 Q14258 protein
NONHSAG060614 LINC00595 ZC3HAV1 Q7Z2W4 protein
NONHSAG060614 LINC00595 ZMAT3 Q9HA38 protein
NONHSAG060614 LINC00595 ZMAT3 Q9HA38 protein
NONHSAG060614 LINC00595 SERBP1 Q8NC51 protein
NONHSAG060614 LINC00595 IGF2BP3 O00425 protein
NONHSAG060614 LINC00595 BRCA1 P38398 protein
NONHSAG060614 LINC00595 SOX2 P48431 protein
NONHSAG060614 LINC00595 IGF2BP1 Q9NZI8 protein
NONHSAG060614 LINC00595 AGO2 Q9UKV8 protein
NONHSAG060614 LINC00595 AGO2 Q9UKV8 protein
NONHSAG060614 LINC00595 AGO2 Q9UKV8 protein
NONHSAG060614 LINC00595 DHX36 Q9H2U1 protein
NONHSAG060614 LINC00595 DHX36 Q9H2U1 protein
NONHSAG032603 LINC01695 ZMAT3 Q9HA38 protein
NONHSAG032603 LINC01695 SP1 P08047 protein
NONHSAG032603 LINC01695 IGF2BP3 O00425 protein
NONHSAG032603 LINC01695 SOX2 P48431 protein
NONHSAG032603 LINC01695 IGF2BP1 Q9NZI8 protein
NONHSAG032603 LINC01695 DHX36 Q9H2U1 protein
NONHSAG032603 LINC01695 DHX36 Q9H2U1 protein
NONHSAG020184 LINC00311 WDR33 Q9C0J8 protein
NONHSAG020184 LINC00311 TARDBP A0A087WZM1 protein
NONHSAG020184 LINC00311 HNRNPF P52597 protein
NONHSAG020184 LINC00311 CSTF2 P33240 protein
NONHSAG020184 LINC00311 RTCB Q9Y3I0 protein
NONHSAG020184 LINC00311 TIAL1 E7ETC0 protein
NONHSAG020184 LINC00311 TDP-43 - protein
NONHSAG020184 LINC00311 TARBP2 Q15633 protein
NONHSAG020184 LINC00311 RBM6 P78332 protein
NONHSAG020184 LINC00311 RBM10 P98175 protein
NONHSAG020184 LINC00311 MOV10 P22626 protein
NONHSAG020184 LINC00311 UPF1 Q92900 protein
NONHSAG020184 LINC00311 hnRNPA2B1 O88569 protein
NONHSAG020184 LINC00311 FUS P35637 protein
NONHSAG020184 LINC00311 CSTF2T Q9H0L4 protein
NONHSAG020184 LINC00311 FAM120A Q9NZB2 protein
NONHSAG020184 LINC00311 NCBP2 P52298 protein
NONHSAG020184 LINC00311 TAF15 Q92804 protein
NONHSAG020184 LINC00311 TIA1 P31483 protein
NONHSAG020184 LINC00311 AGGF1 Q8N302 protein
NONHSAG020184 LINC00311 EWSR1 Q01844 protein
NONHSAG020184 LINC00311 DBHS Q15233 protein
NONHSAG020184 LINC00311 SLTM Q9NWH9 protein
NONHSAG020184 LINC00311 T2FA P35269 protein
NONHSAG020184 LINC00311 EIF2C1 Q9UL18 protein
NONHSAG020184 LINC00311 AGO2 Q9UKV8 protein
NONHSAG020184 LINC00311 AGO3 Q9H9G7 protein
NONHSAG020184 LINC00311 AGO4 Q9HCK5 protein
NONHSAG020184 LINC00311 FBL P22087 protein
NONHSAG020184 LINC00311 RBFOX2 O43251 protein
NONHSAG020184 LINC00311 HNRNPA1 P09651 protein
NONHSAG020184 LINC00311 U2AF2 P26368 protein
NONHSAG020184 LINC00311 PSF P23246 protein
NONHSAG020184 LINC00311 TRIM25 Q14258 protein
NONHSAG020184 LINC00311 ZC3HAV1 Q7Z2W4 protein
NONHSAG020184 LINC00311 IGF2BP3 O00425 protein
NONHSAG020184 LINC00311 SOX2 P48431 protein
NONHSAG020184 LINC00311 FTO Q9C0B1 protein
NONHSAG020184 LINC00311 DHX36 Q9H2U1 protein
ENSG00000241213 LINC02024 ZC3HAV1 Q7Z2W4 protein
ENSG00000241213 LINC02024 SOX2 P48431 protein
ENSG00000241213 LINC02024 IGF2BP1 Q9NZI8 protein
NONHSAG006038 LINC01515 A1CF Q9NQ94 protein
NONHSAG006038 LINC01515 A1CF Q9NQ94 protein
NONHSAG006038 LINC01515 AIMP1 Q12904 protein
NONHSAG006038 LINC01515 EXOSC10 Q01780 protein
NONHSAG006038 LINC01515 FUBP1 Q96AE4 protein
NONHSAG006038 LINC01515 FUBP1 Q96AE4 protein
NONHSAG006038 LINC01515 KHDRBS2 Q5VWX1 protein
NONHSAG006038 LINC01515 KHDRBS2 Q5VWX1 protein
NONHSAG006038 LINC01515 METTL1 Q9UBP6 protein
NONHSAG006038 LINC01515 SCAF8 Q9UPN6 protein
NONHSAG006038 LINC01515 TRIM25 Q14258 protein
NONHSAG006038 LINC01515 USF2 Q15853 protein
NONHSAG006038 LINC01515 ZMAT3 Q9HA38 protein
NONHSAG006038 LINC01515 ZMAT3 Q9HA38 protein
NONHSAG006038 LINC01515 SP1 P08047 protein
NONHSAG006038 LINC01515 WDR4 P57081 protein
NONHSAG006038 LINC01515 CPSF1 Q10570 protein
NONHSAG006038 LINC01515 hnRNPD Q14103 protein
NONHSAG006038 LINC01515 Rbfox2 O43251 protein
NONHSAG006038 LINC01515 IGF2BP3 O00425 protein
NONHSAG006038 LINC01515 SNRPA P09012 protein
NONHSAG006038 LINC01515 RBMX P38159 protein
NONHSAG006038 LINC01515 SOX2 P48431 protein
NONHSAG006038 LINC01515 ELAVL1 Q15717 protein
NONHSAG006038 LINC01515 CPSF7 Q8N684 protein
NONHSAG006038 LINC01515 IGF2BP1 Q9NZI8 protein
NONHSAG006038 LINC01515 AGO2 Q9UKV8 protein
NONHSAG006038 LINC01515 DHX36 Q9H2U1 protein
NONHSAG006038 LINC01515 DHX36 Q9H2U1 protein
NONHSAG006038 LINC01515 Rbfox1 Q9NWB1 protein
- LINC00842 QKI Q96PU8 protein
- LINC00842 SFRS2 Q01130 protein
- LINC00842 YTHDF1 Q9BYJ9 protein
- LINC00842 MBNL2 Q5VZF2 protein
- LINC00842 MOV10 P22626 protein
- LINC00842 YTDC1 Q96MU7 protein
- LINC00842 FBL P22087 protein
- LINC00842 ACIN1 Q9UKV3 protein
- LINC00842 HNRNPA1 P09651 protein
- LINC00842 UPF1 Q92900 protein
- LINC00842 DBHS Q15233 protein
- LINC00842 PSF P23246 protein
- LINC00842 HDAC9 Q9UKV0 protein
- LINC00842 SMARCA4 P51532 protein
- LINC00842 EWSR1 Q01844 protein
NONHSAG005796 LINC00842 ADAR P55265 protein
NONHSAG005796 LINC00842 WDR33 Q9C0J8 protein
NONHSAG005796 LINC00842 SFRS1 Q07955 protein
NONHSAG005796 LINC00842 ELAVL1 P70372 protein
NONHSAG005796 LINC00842 AGO2 Q8CJG0 protein
NONHSAG005796 LINC00842 HNRNPU Q00839 protein
NONHSAG005796 LINC00842 CSTF2 P33240 protein
NONHSAG005796 LINC00842 hnRNPC P07910 protein
NONHSAG005796 LINC00842 TARBP2 Q15633 protein
NONHSAG005796 LINC00842 RBM6 P78332 protein
NONHSAG005796 LINC00842 RBM10 P98175 protein
NONHSAG005796 LINC00842 UPF1 Q92900 protein
NONHSAG005796 LINC00842 hnRNPA2B1 O88569 protein
NONHSAG005796 LINC00842 FUS P35637 protein

The list shows Ensembl/NON CODE ID, LINCRNA and UniProt ID and type of the interacting components

Table 5.

List of LINCRNAs interacting with ncRNAs

NON CODE/ ENSEMBL ID LINCRNA Interacting Component miRNA ID Type
ENSG00000163364 LINC01116 miR-203 MI0000283 miRNA
ENSG00000163364 LINC01116 miR-3141 MI0014165 miRNA
ENSG00000163364 LINC01116 miR-744-5p MI0005559 miRNA
ENSG00000163364 LINC01116 miR-744-5p MI0005559 miRNA
ENSG00000163364 LINC01116 miR-3612 MI0016002 miRNA
ENSG00000163364 LINC01116 miR-744-5p MI0005559 miRNA
NONHSAG035677 LINC00882 miR-214-3p MI0000290 miRNA
NONHSAG020184 LINC00311 hsa-mir-125a-3p MI0000469 miRNA
NONHSAG020184 LINC00311 hsa-miR-125b-5p MI0000446 miRNA
NONHSAG020184 LINC00311 hsa-mir-150 MI0000479 miRNA
NONHSAG020184 LINC00311 hsa-miR-296-3p MI0000747 miRNA
NONHSAG020184 LINC00311 hsa-miR-4319 MI0015848 miRNA
NONHSAG020184 LINC00311 hsa-miR-455-3p MI0003513 miRNA
NONHSAG020184 LINC00311 hsa-miR-129-5p MI0000252 miRNA
NONHSAG020184 LINC00311 hsa-miR-129-2-3p MI0000473 miRNA
NONHSAG020184 LINC00311 hsa-miR-532-3p MI0003205 miRNA
NONHSAG005796 LINC00842 hsa-miR-1224-3p MI0003764 miRNA
NONHSAG005796 LINC00842 hsa-miR-378a-5p MI0000786 miRNA
NONHSAG005796 LINC00842 hsa-miR-378b MI0014154 miRNA
NONHSAG005796 LINC00842 hsa-miR-378c MI0015825 miRNA
NONHSAG005796 LINC00842 hsa-miR-378d MI0016749 miRNA
NONHSAG005796 LINC00842 hsa-miR-378e MI0016750 miRNA
NONHSAG005796 LINC00842 hsa-miR-378f MI0016756 miRNA
NONHSAG005796 LINC00842 hsa-miR-378i MI0016902 miRNA
NONHSAG005796 LINC00842 hsa-miR-422a MI0001444 miRNA
NONHSAG005796 LINC00842 hsa-miR-665 MI0005563 miRNA
NONHSAG005796 LINC00842 hsa-miR-1197 MI0006656 miRNA
NONHSAG005796 LINC00842 hsa-miR-199a-5p MI0000242 miRNA
NONHSAG005796 LINC00842 hsa-miR-199b-5p MI0000282 miRNA
NONHSAG005796 LINC00842 hsa-miR-335-3p MI0000816 miRNA
NONHSAG005796 LINC00842 hsa-miR-378h MI0016808 miRNA
NONHSAG020184.2 LINC00311 SNHG4 ENSG00000281398 ncRNA

The list shows Ensembl/NON CODE ID, LINCRNA and miRNA ID and type of the interacting components

Table 6.

List of LINCRNAs interacting with mRNAs

NON CODE/ ENSEMBL ID LINCRNA Interacting Component ENSEMBL ID Type
ENSG00000163364 LINC01116 MYC ENSG00000136997 mRNA
NONHSAG020184.2 LINC00311 KIAA0513 ENSG00000135709 mRNA

The list shows Ensembl/NON CODE ID, LINCRNA and type of the interacting components

Prediction of targets of the miRNAs

The 24 miRNAs obtained from the above analysis targets were fed into miRDB for mRNA target prediction. mRNA targets with a score of >/= 95 were chosen. We have identified 288 mRNA targets associated with the input of 24 miRNAs.

The predicted mRNA targets were cross-referenced with our dataset to identify the common mRNAs. Subsequently, we established lincRNA-miRNA-mRNA combinations Table 7.

Table 7.

List of LINCRNA-miRNA-mRNA combinations

LINCRNA Log2FC (for LINCRNA) miRNA mRNA target Log2FC (for mRNA)
LINC00882 1.812015961 miR-214-3p ATP2A3 3.024375
PIM1 1.596972
FBXO32 2.52126
LINC00311 -2.371344708 hsa-mir-125a-3p BRCA1 -2.203512532
SH3TC2 -2.060263012
LINC00842 -2.799537368 hsa-miR-1224-3p CDC25A -2.958067112
KDR -2.369999586
SLC4A8 -1.72618536
hsa-miR-199a-5p HAPLN1 -3.235820469
hsa-miR-199b-5p HAPLN1 -3.235820469
hsa-miR-335-3p MCAM -1.550103307
UTY -1.526148211
CCDC85A -3.03369872
KCNQ5 -1.982236088
EPHA7 -1.737844738

The list shows differentially expressed LINCRNA, relative fold change values of LINCRNA (Log2FC (for LINCRNA)), miRNA, mRNA target and relative fold change values of target mRNA (Log2FC (for mRNA)) in the same data set

Discussion

The effect of microenvironment on the initiation, maintenance and progression of solid tumors has been established beyond doubt [25]. CAFs, which constitute a significant component of the TME are a major source of secreted factors. Interaction with the CAF and derived factors not only play a significant role in promoting tumorigenesis and metastasis but also influence the response of the tumor to drugs [10, 12]. It is likely that in response to chemotherapeutic drugs, some pro-tumorigenic actions of CAFs may be activated, which in turn aid the tumor cells in escaping from the drug challenge. Studies on prostate cancer have shown that tumor cells grown in the presence of CAFs or CAF-derived factors show much higher tolerance to drugs as compared to tumor cells grown alone [26]. Also, cells grown with CAF-derived factors have a higher potential to metastasize [27]. These highlight the possibility of targeting CAF/derived factors for therapeutic purposes.

Attempts have been made to target various components of the TME, such as ECM, exosomes, CAFs, immune cells, vascular cells etc [28].

Angiotensin II receptor agonists such as Losartan, Candersartan, etc. have been shown to reduce mortality in gastro-esophageal cancer patients [29]. Losartan and its analogs reduce the secretion of collagen I by interfering with transforming growth factor-β (TGF-β) signalling. This improves the delivery of chemotherapeutics to tumor cells [30, 31]. Ronespartat (SST0001), a heparanase inhibitor has shown promising results in inhibiting tumor growth when used alone or in combination at different phases of clinical trials [32, 33]. Considering the important role of Matrix Metalloproteinases (MMPs) and collagen cross-linkers in ECM remodelling several drugs have been tried to modulate MMP activity Ex: Incyclinide, JNJ0966, Fab 3369 [3438]. However extreme caution has to be exercised while dealing with ECM as it can also promote metastases.

Several anti—angiogenic agents such as Bevacizumab, Apatinib, anti-VEGF antibodies in various combinations along with other chemotherapeutic agents such as paclitaxel and carboplatin have shown promising results in clinical trials (NCT02885753, NCT03100955). Multiple therapeutic strategies targeting the immune system, such as inhibition of macrophage recruitment and differentiation into the pro-tumoral TAMs Ex: anti-CSF-1R neutralizing antibodies or small molecule inhibitors, antibody anti-CD204, targeted-folate-receptor beta (FRβ) [3941]; targeting chronic inflammation using IL-1R antagonists such as Anakinra (Kineret), anti-IL-1β monoclonal antibody [42, 43]; activating the anti-tumoral activity of the TME by used of GM-CSF [44], immune checkpoint therapies such as CTLA-4 and PD-1 [45, 46] have shown promise of better prognosis.

CAF being the most abundant cell type in the TME would be attractive targets for TME therapy. Fibroblast activation protein α (FAP), a membrane bound serine protease has been targeted for therapy in combination with a variety of drugs. However, these approaches have not been very successful. It is very likely due to the fact that FAP is not specific to CAFs, but also seen in normal fibroblasts. More qualitative and quantitative comparisons between normal and cancer associated fibroblasts are required to identify more effective ways of therapeutic targeting [47, 48]. Our study has tried to address this lacuna.

CAFs are distinguished from normal fibroblasts by their contractile characteristics, and metabolic and transcriptomic activity [49, 50]. Also, they are shown to express higher levels of FAP, alpha SMA and vimentin [49, 51, 52]. However, till date, there are no known unique markers of CAF. Identification of such markers becomes extremely essential if CAFs/derived factors are to be targeted for therapy, particularly because there are both pro- and anti-tumor properties of these factors. In this study, we have used the NGS platform to do a comparative analysis of fibroblasts derived from non-malignant (BPH) and cancerous prostate. This study has identified 818 genes differentially expressed between normal and cancer-associated fibroblasts. Also, there are 17 lncRNAs which show differential expression.

Long Intergenic Non-Coding RNAs (lincRNAs) are RNA molecules exceeding 200 nucleotides, lacking protein-coding functions and non-overlapping with annotated coding genes. They impact gene expression by modulating chromatin structure, regulating transcription of nearby and distant genes, and interacting with DNA, RNA, and proteins [5355]. In cancer patients, differential lncRNA expression has been correlated with the overall survival (OS), metastasis, as well as tumor stage/grade [5658]. LncRNAs have been detected in body fluids like plasma, serum, and urine using real-time PCR. One of the reasons lncRNAs are suitable as cancer diagnostic and prognostic biomarkers is their remarkable stability while circulating in body fluids, particularly when enclosed within exosomes or apoptotic bodies [59]. These characteristics of lncRNA make them attractive candidates for biomarkers. These biomarkers offer a minimally invasive alternative to conventional biopsies [60]. These markers can also be used to predict the prognosis of cancer patients, assess the risk of tumor metastasis and recurrence after surgery, and also to evaluate the success of therapeutic intervention. The distinct expression profiles of cancer-associated lncRNAs, which can vary significantly among different types of cancer, hold promise as efficient tumor biomarkers in various body fluids [57, 58, 61] (Supplementary Table 1 showing LncRNA as a prognostic and diagnostic marker in different cancers and Supplementary Fig. 3 showing tissue specific LNCRNA as potential biomarkers).

Despite the fact that lincRNAs are good biomarkers, targeting lincRNA or other ncRNA for therapeutic purposes have been extremely challenging. One of the reasons being very low conservation of lncRNAs across species. A small number of lncRNAs which are conserved between humans and mice have been discovered, while many human lncRNAs are absent in mice [62, 63].

Although it has been observed that lincRNAs show specific expression patterns in cancers, the heterogeneity in tumors makes it difficult to target them. Some studies have used in-silico approaches to identify lincRNA-miRNA-mRNA combinations. For example, a study has shown the influence of LOC101928304/miR-490-3p/LRRC2, a lincRNA-miRNA-mRNA axis on Atrial Fibrillation (AF). The levels of LOC101928304 and LRRC were elevated whereas miR-490-3p exhibited a decreased expression in the myocardial tissue of AF patients [64]. However, there is not much experimental data available. Given the advantages of using lincRNAs as biomarkers and also the difficulties in targeting them for therapeutic intervention, identifying a combination of lincRNA-miRNA-mRNA may provide better options for targeting. In this study, we have predicted the targets of the differentially expressed lincRNAs and identified 15 lincRNA-miRNA-mRNA combinations. This would help in understanding the mechanism of action of these RNAs as well as identifying strategies for therapeutic targeting. However, this would in future need more experimental validation.

Supplementary information

12885_2024_13006_MOESM1_ESM.xlsx (13.1KB, xlsx)

Supplementary Material 1: Supplementary table 1: LNCRNAs as cancer prognostic and/or diagnostic marker. The table shows the type of cancer, LNCRNA involved, LNCRNA expression, and their relevance as prognostic or diagnostic markers [6589]

12885_2024_13006_MOESM2_ESM.docx (1.9MB, docx)

Supplementary Material 2: Supplementary file. Shows the quality assessment of all the RNA samples using Tapestation

12885_2024_13006_MOESM3_ESM.png (71.6KB, png)

Supplementary Material 3: Supplementary Fig 1. RNA sequencing analysis workflow

12885_2024_13006_MOESM4_ESM.png (91.9KB, png)

Supplementary Material 4: Supplementary Fig 2. LINCRNA analysis workflow

12885_2024_13006_MOESM5_ESM.png (301KB, png)

Supplementary Material 5: Supplementary Fig 3 Tissue-specific LNCRNA as potential markers

Abbreviations

TME

Tumor microenvironment

CAFs

Cancer-associated fibroblasts

BPH

Benign Prostate Hyperplasia

LINCRNA

Non-Intergenic Non-Coding RNA

TCGA

The Cancer Genome Atlas

ECM

Extracellular matrix

TRUS

Transrectal Ultrasound Scan

TURP

Transurethral Resection of the Prostate

RPMI

Roswell Park Memorial Institute

PenStrep

Penicillin Streptomycin

RIN

RNA Integrity Number

ncRNA

Non-Coding RNA

LNCRNA

Long Non-Coding RNA

LINCRNA

Long-intergenic Non-Coding RNA

miRNA

MicroRNA

circRNA

CircularRNA

mRNA

Messenger RNA

FAP

Fibroblast Activation Protein

SMA

Smooth Muscle Actin

OS

Overall Survival

Authors' contributions

AA analyzed the transcriptomic data,  prepared the manuscript draft with all figures and tables. MSM, RRA, and NN helped in the collection of patient samples, deriving the fibroblasts and preliminary characterization. VB and NT helped in the collection of patient samples and clinical/pathological  evaluation. RK helped co-ordinate  all the patient-related work and helped in procuring funding. PR conceived and strategized the study, procured the funding, finalized the manuscript. All authors reviewed and approved the manuscript

Clinical trial number

Not applicable.

Funding

This study was supported by the Indian Council for Medical Research, Govt of India (2019 − 0937). AA is supported by Lady Tata Memorial Trust Fellowship. The authors thank the Centre for Human Genetics, Bengaluru, and the Institute of Nephro-Urology, Bengaluru for all the support during the course of this study.

Availability of data and materials

The datasets generated and analyzed during this study are available on GEO, Accession Number GSE270705.

Declarations

Ethics approval and consent to participate

The study was approved by the Institutional Ethics Committee of both the participating institutions (CHG/077(b)/IEC/2019-20/001 and EC/01/2019). Informed consent has been obtained from all participants whose tissue samples have been used in this study. The identity of the patients has been kept confidential.

The study has been conducted in accordance with the Declaration of Helsinki.

This study presented here was funded by the Indian Council for Medical Research, Govt of India (2019 − 0937), granted to PR.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

References

  • 1.de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403. [DOI] [PubMed] [Google Scholar]
  • 2.Patel H, et al. Modulating secreted components of tumor microenvironment: a masterstroke in tumor therapeutics. Cancer Biol Ther. 2018;19(1):3–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Baghban R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221: 107753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 2012;11(2):257–66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mao X, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bu L, et al. Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Sci. 2020;111(10):3468–77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Sun Y, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18(9):1359–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Sun Y, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35(33):4321–34. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 11.Zhang D, et al. Tumor-stroma IL1β-IRAK4 feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis in pancreatic cancer. Cancer Res. 2018;78(7):1700–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Qiao Y, et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene. 2018;37(7):873–83. [DOI] [PubMed] [Google Scholar]
  • 13.Lotti F, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210(13):2851–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Calon A, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47(4):320–9. [DOI] [PubMed] [Google Scholar]
  • 15.Olive KP, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Tang YA, et al. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci U S A. 2018;115(26):E5990-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Sansone P, et al. Evolution of Cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by Stromal Microvesicles. Cancer Res. 2017;77(8):1927–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Yu T, et al. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene. 2017;36(15):2131–45. [DOI] [PubMed] [Google Scholar]
  • 19.Asif PJ et al. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers (Basel), 2021;13(18). [DOI] [PMC free article] [PubMed]
  • 20.Jena BC, et al. Cancer associated fibroblast mediated chemoresistance: a paradigm shift in understanding the mechanism of tumor progression. Biochim Biophys Acta Rev Cancer. 2020;1874(2): 188416. [DOI] [PubMed] [Google Scholar]
  • 21.Rizzolio S, Giordano S, Corso S. The importance of being CAFs (in cancer resistance to targeted therapies). J Exp Clin Cancer Res. 2022;41(1):319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Zheng Y, et al. NPInter v5.0: ncRNA interaction database in a new era. Nucleic Acids Res. 2023;51(D1):D232-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.NPInter. Available from: http://bigdata.ibp.ac.cn/npinter5/.
  • 24.miRDB. Available from: https://mirdb.org/.
  • 25.Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Cheteh EH, et al. Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death Dis. 2017;8(6):e2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Linxweiler J, et al. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Rep. 2020;10(1):12575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Roma-Rodrigues C, et al. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20(4):840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Busby J, et al. Angiotensin receptor blocker use and gastro-oesophageal cancer survival: a population-based cohort study. Aliment Pharmacol Ther. 2018;47(2):279–88. [DOI] [PubMed] [Google Scholar]
  • 30.Coulson R, et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget. 2017;8(12):18640–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Diop-Frimpong B, et al. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Cassinelli G, et al. Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochem Pharmacol. 2013;85(10):1424–32. [DOI] [PubMed] [Google Scholar]
  • 33.Ritchie JP, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res. 2011;17(6):1382–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Chu QS, et al. A phase II and pharmacological study of the matrix metalloproteinase inhibitor (MMPI) COL-3 in patients with advanced soft tissue sarcomas. Invest New Drugs. 2007;25(4):359–67. [DOI] [PubMed] [Google Scholar]
  • 35.Gu Y, et al. Inhibition of breast cancer cell extracellular matrix degradative activity by chemically modified tetracyclines. Ann Med. 2005;37(6):450–60. [DOI] [PubMed] [Google Scholar]
  • 36.Fingleton B. CMT-3. CollaGenex. Curr Opin Investig Drugs. 2003;4(12):1460–7. [PubMed] [Google Scholar]
  • 37.Scannevin RH, et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J Biol Chem. 2017;292(43):17963–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Ling B, et al. A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models. Oncotarget. 2017;8(35):58372–85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Szebeni GJ et al. Pro-tumoral inflammatory myeloid cells as emerging therapeutic targets. Int J Mol Sci, 2016. 17(11). [DOI] [PMC free article] [PubMed]
  • 40.Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Komohara Y, et al. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99Pt B:p180-185. [DOI] [PubMed] [Google Scholar]
  • 42.Holen I, et al. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget. 2016;7(46):75571–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Tulotta C, Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer. 2018;25(7):R421-434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yan WL, et al. Activation of GM-CSF and TLR2 signaling synergistically enhances antigen-specific antitumor immunity and modulates the tumor microenvironment. J Immunother Cancer. 2021;9(10):e002758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Shiravand Y, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Boohaker RJ, et al. Rational design and development of a peptide inhibitor for the PD-1/PD-L1 interaction. Cancer Lett. 2018;434:11–21. [DOI] [PubMed] [Google Scholar]
  • 47.Ishii N, et al. Conophylline suppresses pancreatic cancer desmoplasia and cancer-promoting cytokines produced by cancer-associated fibroblasts. Cancer Sci. 2019;110(1):334–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59(1):85–93. [DOI] [PubMed] [Google Scholar]
  • 49.Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 2010;15(1):166–79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.De Wever O, et al. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 2008;123(10):2229–38. [DOI] [PubMed] [Google Scholar]
  • 51.Muchlińska A, et al. Alpha-smooth muscle actin-positive cancer-associated fibroblasts secreting osteopontin promote growth of luminal breast cancer. Cell Mol Biol Lett. 2022;27(1):45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Gilardi L, et al. Imaging Cancer-Associated fibroblasts (CAFs) with FAPi PET. Biomedicines. 2022;10(3):523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ti W, Wang J, Cheng Y. The interaction between ong non-coding RNAs and Cancer-Associated fibroblasts in lung cancer. Front Cell Dev Biol. 2021;9:714125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19(3):143–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Sebastian-delaCruz M, et al. The role of lncRNAs in gene expression regulation through mRNA stabilization. Non-Coding RNA. 2021;7(1):3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Qian Y, Shi L, Luo Z. Long non-coding RNAs in Cancer: implications for diagnosis, prognosis, and Therapy. Front Med (Lausanne). 2020;7:612393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Gao N, et al. Long non-coding RNAs: the Regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol. 2020;10: 598817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Beylerli O, et al. Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res. 2022;7(2):66–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Akers JC, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Su YJ, et al. Circulating long noncoding RNA as a potential target for prostate ancer. Int J Mol Sci. 2015;16(6):13322–38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in ancer. Dis Markers. 2017;2017:p7243968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Necsulea A, et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature. 2014;505(7485):635–40. [DOI] [PubMed] [Google Scholar]
  • 63.Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9. [DOI] [PubMed] [Google Scholar]
  • 64.Ke X, et al. Construction and analysis of the lncRNA-miRNA-mRNA network based on competing endogenous RNA in Atrial Fibrillation. Front Cardiovasc Med. 2022;9: 791156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Luo J, et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat Commun. 2019;10(1):2571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Salameh A, et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A. 2015;112(27):8403–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Ren S, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949–59. [DOI] [PubMed] [Google Scholar]
  • 68.Pal G, et al. Long noncoding RNA from PVT1 exon 9 is overexpressed in prostate Cancer and induces Malignant Transformation and Castration Resistance in prostate epithelial cells. Genes. 2019;10(12): 964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Zhang Y, et al. An androgen reduced transcript of LncRNA GAS5 promoted prostate cancer proliferation. PLoS ONE. 2017;12(8): e0182305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Kidd SG, et al. High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia. 2021;23(6):634–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Zheng R, et al. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer. 2018;17(1):143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Xue M, et al. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci. 2016;107(1):18–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Liu D, et al. LncRNA SPRY4-IT1 sponges mir-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett. 2017;388:281–91. [DOI] [PubMed] [Google Scholar]
  • 74.Sun X, et al. Long non-coding RNA HOTAIR regulates cyclin J via inhibition of microRNA-205 expression in bladder cancer. Cell Death Dis. 2015;6(10):e1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Zhang K, et al. Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. Cancer Biomark. 2016;17(2):187–94. [DOI] [PubMed] [Google Scholar]
  • 76.Younger ST, Rinn JL. Lnc’-ing enhancers to MYC regulation. Cell Res. 2014;24(6):643–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Ling H, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Xu C, et al. MALAT-1: a long non-coding RNA and its important 3’ end functional motif in colorectal cancer metastasis. Int J Oncol. 2011;39(1):169–75. [DOI] [PubMed] [Google Scholar]
  • 79.Zhang X, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88(11):5119–26. [DOI] [PubMed] [Google Scholar]
  • 80.Kogo R, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6. [DOI] [PubMed] [Google Scholar]
  • 81.Zhang J, et al. HOTAIR contributes to the carcinogenesis of gastric cancer via modulating cellular and exosomal miRNAs level. Cell Death Dis. 2020;11(9):780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Okugawa Y, et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis. 2014;35(12):2731–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Li L, et al. The human RNA surveillance factor UPF1 modulates gastric cancer progression by Targeting Long non-coding RNA MALAT1. Cell Physiol Biochem. 2017;42(6):2194–206. [DOI] [PubMed] [Google Scholar]
  • 84.Xia H, et al. The lncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget. 2016;7(35):56209–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Abbastabar M, et al. lncRNA involvement in hepatocellular carcinoma metastasis and prognosis. EXCLI J. 2018;17:900–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Shi WH, et al. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma. Tumour Biol. 2015;36(4):2501–7. [DOI] [PubMed] [Google Scholar]
  • 87.Zhang X, et al. Elevated expression of CCAT2 is associated with poor prognosis in esophageal squamous cell carcinoma. J Surg Oncol. 2015;111(7):834–9. [DOI] [PubMed] [Google Scholar]
  • 88.Wang Y, et al. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 2015;367(2):122–8. [DOI] [PubMed] [Google Scholar]
  • 89.Di W, et al. The long non-coding RNA HOTAIR promotes thyroid cancer cell growth, invasion and migration through the mir-1-CCND2 axis. Am J Cancer Res. 2017;7(6):1298–309. [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12885_2024_13006_MOESM1_ESM.xlsx (13.1KB, xlsx)

Supplementary Material 1: Supplementary table 1: LNCRNAs as cancer prognostic and/or diagnostic marker. The table shows the type of cancer, LNCRNA involved, LNCRNA expression, and their relevance as prognostic or diagnostic markers [6589]

12885_2024_13006_MOESM2_ESM.docx (1.9MB, docx)

Supplementary Material 2: Supplementary file. Shows the quality assessment of all the RNA samples using Tapestation

12885_2024_13006_MOESM3_ESM.png (71.6KB, png)

Supplementary Material 3: Supplementary Fig 1. RNA sequencing analysis workflow

12885_2024_13006_MOESM4_ESM.png (91.9KB, png)

Supplementary Material 4: Supplementary Fig 2. LINCRNA analysis workflow

12885_2024_13006_MOESM5_ESM.png (301KB, png)

Supplementary Material 5: Supplementary Fig 3 Tissue-specific LNCRNA as potential markers

Data Availability Statement

The datasets generated and analyzed during this study are available on GEO, Accession Number GSE270705.


Articles from BMC Cancer are provided here courtesy of BMC

RESOURCES