Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Sep 28:2024.09.27.615517. [Version 1] doi: 10.1101/2024.09.27.615517

Megabase-scale loss of heterozygosity provoked by CRISPR-Cas9 DNA double-strand breaks

Samantha B Regan, Darpan Medhi, Travis B White, Yi-Zhen Jiang, Su Jia, Qichen Deng, Maria Jasin
PMCID: PMC11463394  PMID: 39386534

Abstract

Harnessing DNA double-strand breaks (DSBs) is a powerful approach for gene editing, but it may provoke loss of heterozygosity (LOH), which predisposes to tumorigenesis. To interrogate this risk, we developed a two- color flow cytometry-based system (Flo-LOH), detecting LOH in ∼5% of cells following a DSB. After this initial increase, cells with LOH decrease due to a competitive disadvantage with parental cells, but if isolated, they stably propagate. Segmental loss from terminal deletions with de novo telomere addition and nonreciprocal translocations is observed as well as whole chromosome loss, especially following a centromeric DSB. LOH spans megabases distal from the DSB, but also frequently tens of megabases centromere-proximal. Inhibition of microhomology-mediated end joining massively increases LOH, which is synergistically increased with concomitant inhibition of canonical nonhomologous end joining. The capacity for large-scale LOH must therefore be considered when using DSB-based gene editing, especially in conjunction with end joining inhibition.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES