Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Sep 28:2024.09.27.615234. [Version 1] doi: 10.1101/2024.09.27.615234

HEXIM1 is correlated with Alzheimer’s disease pathology and regulates immediate early gene dynamics in neurons

Myo Htet, Camila Estay-Olmos, Lan Hu, Yiyang Wu, Brian E Powers, Clorissa D Campbell, M Rafiuddin Ahmed, Timothy J Hohman, Julie A Schneider, David A Bennett, Vilas Menon, Philip L De Jager, Garrett A Kaas, Roger J Colbran, Celeste B Greer
PMCID: PMC11463448  PMID: 39386727

ABSTRACT

Impaired memory formation and recall is a distinguishing feature of Alzheimer’s disease, and memory requires de novo gene transcription in neurons. Rapid and robust transcription of many genes is facilitated by the formation of a poised basal state, in which RNA polymerase II (RNAP2) has initiated transcription, but is paused just downstream of the gene promoter. Neuronal depolarization releases the paused RNAP2 to complete the synthesis of messenger RNA (mRNA) transcripts. Paused RNAP2 release is controlled by positive transcription elongation factor b (P-TEFb), which is sequestered into a larger inactive complex containing Hexamethylene bisacetamide inducible protein 1 (HEXIM1) under basal conditions. In this work, we find that neuronal expression of HEXIM1 mRNA is highly correlated with human Alzheimer’s disease pathologies. Furthermore, P-TEFb regulation by HEXIM1 has a significant impact on the rapid induction of neuronal gene transcription, particularly in response to repeated depolarization. These data indicate that HEXIM1/P-TEFb has an important role in inducible gene transcription in neurons, and for setting and resetting the poised state that allows for the robust activation of genes necessary for synaptic plasticity.

GRAPHICAL ABSTRACT

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES