Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Sep 26:2024.09.24.614801. [Version 1] doi: 10.1101/2024.09.24.614801

Microscopic Origins of Flow Activation Energy in Biomolecular Condensates

Sean Yang, Davit A Potoyan
PMCID: PMC11463594  PMID: 39386700

Abstract

Material properties of biomolecular condensates dictate their form and function, influencing the diffusion of regulatory molecules and the dynamics of biochemical reactions. The increasing quality and quantity of microrheology experiments on biomolecular condensates necessitate a deeper understanding of the molecular grammar that encodes their material properties. Recent reports have identified a characteristic timescale related to network relaxation dynamics in condensates, which governs their temperature-dependent viscoelastic properties. This timescale is intimately connected to an activated process involving the dissociation of sticker regions, with the energetic barrier referred to as flow activation energy. The microscopic origin of activation energy is a complex function of sequence patterns, component stoichiometry, and external conditions. This study elucidates the microscopic origins of flow activation energy in single and multicomponent condensates composed of model peptide sequences with varying sticker and spacer motifs, with RNA as a secondary component. We dissected the effects of condensate density, RNA stoichiometry, and peptide sequence patterning using extensive sequence-resolved coarse-grained simulations. We found that flow activation energy is closely linked to the lifetime of sticker-sticker pairs under certain conditions, though the presence of multiple competing stickers further complicates this relationship. The insights gained in this study should help establish predictive multiscale models for the material properties and serve as a valuable guide for the programmable design of condensates.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES