ABSTRACT
Predicting the progression of solid cancers based solely on genetics is challenging due to the influence of the tumor microenvironment (TME). For colorectal cancer (CRC), tumors deficient in mismatch repair (dMMR) are more immune infiltrated than mismatch repair proficient (pMMR) tumors and have better prognosis following resection. Here we quantify features of the CRC TME by combining spatial profiling with genetic analysis and release our findings via a spatially enhanced version of cBioPortal that facilitates multi-modal data exploration and analysis. We find that ∼20% of pMMR tumors exhibit similar levels of T cell infiltration as dMMR tumors and that this is associated with better survival but not any specific somatic mutation. These T cell-infiltrated pMMR (tipMMR) tumors contain abundant cells expressing PD1 and PDL1 as well as T regulatory cells, consistent with a suppressed immune response. Thus, like dMMR CRC, tipMMR CRC may benefit from immune checkpoint inhibitor therapy.
SIGNIFICANCE
pMMR tumors with high T cell infiltration and active immunosuppression are identifiable with a mid-plex imaging assay whose clinical deployment might double the number of treatment-naïve CRCs eligible for ICIs. Moreover, the low tumor mutational burden in tipMMR CRC shows that MMR status is not the only factor promoting immune infiltration.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.