Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Mar 1;234(2):295–303. doi: 10.1042/bj2340295

Role of branched-chain 2-oxo acid dehydrogenase and pyruvate dehydrogenase in 2-oxobutyrate metabolism.

R Paxton, P W Scislowski, E J Davis, R A Harris
PMCID: PMC1146565  PMID: 3718468

Abstract

Purified branched-chain 2-oxo acid dehydrogenase (BCODH) and pyruvate dehydrogenase (PDH) had apparent Km values (microM) for 2-oxobutyrate of 26 and 114, with a relative Vmax. (% of Vmax. for 3-methyl-2-oxobutyrate and pyruvate) of 38 and 45% respectively. The phosphorylation state of both complexes in extracts of mitochondria from rat liver, kidney, heart and skeletal muscle was shown to influence oxidative decarboxylation of 2-oxobutyrate. Inhibitory antibodies to BCODH and an inhibitor of PDH (3-fluoropyruvate) were used with mitochondrial extracts to determine the relative contribution of both complexes to oxidative decarboxylation of 2-oxobutyrate. Calculated rates of 2-oxobutyrate decarboxylation in mitochondrial extracts, based on the kinetic constants given above and the activities of both complexes, were the same as the measured rates. Hydroxyapatite chromatography of extracts of mitochondria from rat liver revealed only two peaks of oxidative decarboxylation of 2-oxobutyrate, with one peak associated with PDH and the other with BCODH. Competition studies with various 2-oxo acids revealed a different inhibition pattern with mitochondrial extracts from liver compared with those from heart or skeletal muscle. We conclude that both intramitochondrial complexes are responsible for oxidative decarboxylation of 2-oxobutyrate. However, the BCODH is probably the more important complex, particularly in liver, on the basis of kinetic analyses, activity or phosphorylation state of both complexes, competition studies, and the apparent physiological concentration of pyruvate, 2-oxobutyrate and the branched-chain 2-oxo acids.

Full text

PDF
295

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar T. S., Benevenga N. J., Harper A. E. Effect of dietary methionine level on its metabolism in rats. J Nutr. 1974 Jun;104(6):761–771. doi: 10.1093/jn/104.6.761. [DOI] [PubMed] [Google Scholar]
  2. Bisswanger H. Substrate specificity of the pyruvate dehydrogenase complex from Escherichia coli. J Biol Chem. 1981 Jan 25;256(2):815–822. [PubMed] [Google Scholar]
  3. Blass J. P., Lewis C. A. Kinetic properties of the partially purified pyruvate dehydrogenase complex of ox brain. Biochem J. 1973 Jan;131(1):31–37. doi: 10.1042/bj1310031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borud O., Pettersen J. E. Normal 2-aminobutyrate oxidation and increased valine oxidation in fibroblasts deficient in pyruvate dehydrogenase. J Inherit Metab Dis. 1982;5(1):55–57. doi: 10.1007/BF01799755. [DOI] [PubMed] [Google Scholar]
  5. Bowden J. A., Brestel E. P., Cope W. T., McArthur C. L., 3rd, Westfall D. N., Fried M. -Ketoisocaproic acid inhibition of pyruvate and -ketoglutarate oxidative decarboxylation in rat liver slices. Biochem Med. 1970 Aug;4(1):69–76. doi: 10.1016/0006-2944(70)90104-3. [DOI] [PubMed] [Google Scholar]
  6. Bremer J. Pyruvate dehydrogenase, substrate specificity and product inhibition. Eur J Biochem. 1969 Apr;8(4):535–540. doi: 10.1111/j.1432-1033.1969.tb00559.x. [DOI] [PubMed] [Google Scholar]
  7. Brosnan J. T., Man K. C., Hall D. E., Colbourne S. A., Brosnan M. E. Interorgan metabolism of amino acids in streptozotocin-diabetic ketoacidotic rat. Am J Physiol. 1983 Feb;244(2):E151–E158. doi: 10.1152/ajpendo.1983.244.2.E151. [DOI] [PubMed] [Google Scholar]
  8. Ciman M., Siliprandi N. On the oxidation of alpha-oxobutyrate by isolated mammalian mitochondria. Biochim Biophys Acta. 1968 Aug 20;162(2):164–169. doi: 10.1016/0005-2728(68)90098-4. [DOI] [PubMed] [Google Scholar]
  9. DAVIS E. J. ON THE OXIDATION OF ACETATE AND PYRUVATE BY GUINEA-PIG HEART SARCOSOMES. Biochim Biophys Acta. 1965 Feb 22;96:217–230. [PubMed] [Google Scholar]
  10. Dawson A. G., Hird F. J. Oxidation of L-valine by rat kidney preparations. Arch Biochem Biophys. 1968 Sep 20;127(1):622–626. doi: 10.1016/0003-9861(68)90270-1. [DOI] [PubMed] [Google Scholar]
  11. Efron M. L., Kang E. S., Visakorpi J., Fellers F. X. Effect of elevated plasma phenylalanine levels on other amino acids in phenylketonuric and normal subjects. J Pediatr. 1969 Mar;74(3):399–405. doi: 10.1016/s0022-3476(69)80197-6. [DOI] [PubMed] [Google Scholar]
  12. Finkelstein J. D., Martin J. J. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem. 1984 Aug 10;259(15):9508–9513. [PubMed] [Google Scholar]
  13. Gillim S. E., Paxton R., Cook G. A., Harris R. A. Activity state of the branched chain alpha-ketoacid dehydrogenase complex in heart, liver, and kidney of normal, fasted, diabetic, and protein-starved rats. Biochem Biophys Res Commun. 1983 Feb 28;111(1):74–81. doi: 10.1016/s0006-291x(83)80119-3. [DOI] [PubMed] [Google Scholar]
  14. Harper A. E., Benjamin E. Relationship between intake and rate of oxidation of leucine and alpha-ketoisocaproate in vivo in the rat. J Nutr. 1984 Feb;114(2):431–440. doi: 10.1093/jn/114.2.431. [DOI] [PubMed] [Google Scholar]
  15. Harris R. A., Paxton R., Parker R. A. Activation of the branched-chain alpha-ketoacid dehydrogenase complex by a broad specificity protein phosphatase. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1497–1503. doi: 10.1016/s0006-291x(82)80168-x. [DOI] [PubMed] [Google Scholar]
  16. Hughes W. A., Halestrap A. P. The regulation of branched-chain 2-oxo acid dehydrogenase of liver, kidney and heart by phosphorylation. Biochem J. 1981 May 15;196(2):459–469. doi: 10.1042/bj1960459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hutson S. M., Harper A. E. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease. Am J Clin Nutr. 1981 Feb;34(2):173–183. doi: 10.1093/ajcn/34.2.173. [DOI] [PubMed] [Google Scholar]
  18. Johnson W. A., Connelly J. L. Studies on the mutual influences of substrates on bovine -keto acid metabolism. Biochemistry. 1972 Jun 20;11(13):2416–2421. doi: 10.1021/bi00763a005. [DOI] [PubMed] [Google Scholar]
  19. Kang-Lee Y. A., Harper A. E. Threonine metabolism in vivo: effect of threonine intake and prior induction of threonine dehydratase in rats. J Nutr. 1978 Jan;108(1):163–175. doi: 10.1093/jn/108.1.163. [DOI] [PubMed] [Google Scholar]
  20. Kanzaki T., Hayakawa T., Hamada M., Fukuyoshi Y., Koike M. Mammalian alpha-keto acid dehydrogenase complexes. IV. Substrate specificities and kinetic properties of the pig heart pyruvate and 2-oxyoglutarate dehydrogenase complexes. J Biol Chem. 1969 Mar 10;244(5):1183–1187. [PubMed] [Google Scholar]
  21. Koike K., Koike M. Fluorescent analysis of alpha-keto acids in serum and urine by high-performance liquid chromatography. Anal Biochem. 1984 Sep;141(2):481–487. doi: 10.1016/0003-2697(84)90074-5. [DOI] [PubMed] [Google Scholar]
  22. Landaas S., Pettersen J. E. Clinical conditions associated with urinary excretion of 2-hydroxybutyric acid. Scand J Clin Lab Invest. 1975 May;35(3):259–266. [PubMed] [Google Scholar]
  23. Mitchell A. D., Benevenga N. J. The role of transamination in methionine oxidation in the rat. J Nutr. 1978 Jan;108(1):67–78. doi: 10.1093/jn/108.1.67. [DOI] [PubMed] [Google Scholar]
  24. Odessey R. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation. FEBS Lett. 1980 Dec 1;121(2):306–308. doi: 10.1016/0014-5793(80)80369-3. [DOI] [PubMed] [Google Scholar]
  25. Patston P. A., Espinal J., Randle P. J. Effects of diet and of alloxan-diabetes on the activity of branched-chain 2-oxo acid dehydrogenase complex and of activator protein in rat tissues. Biochem J. 1984 Sep 15;222(3):711–719. doi: 10.1042/bj2220711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paxton R., Harris R. A. Clofibric acid, phenylpyruvate, and dichloroacetate inhibition of branched-chain alpha-ketoacid dehydrogenase kinase in vitro and in perfused rat heart. Arch Biochem Biophys. 1984 May 15;231(1):58–66. doi: 10.1016/0003-9861(84)90362-x. [DOI] [PubMed] [Google Scholar]
  27. Paxton R., Harris R. A. Isolation of rabbit liver branched chain alpha-ketoacid dehydrogenase and regulation by phosphorylation. J Biol Chem. 1982 Dec 10;257(23):14433–14439. [PubMed] [Google Scholar]
  28. Paxton R., Harris R. A. Regulation of branched-chain alpha-ketoacid dehydrogenase kinase. Arch Biochem Biophys. 1984 May 15;231(1):48–57. doi: 10.1016/0003-9861(84)90361-8. [DOI] [PubMed] [Google Scholar]
  29. Peters J. C., Harper A. E. Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J Nutr. 1985 Mar;115(3):382–398. doi: 10.1093/jn/115.3.382. [DOI] [PubMed] [Google Scholar]
  30. Pettit F. H., Yeaman S. J., Reed L. J. Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4881–4885. doi: 10.1073/pnas.75.10.4881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rogers D. H., Rudney H. Modification of 3-hydroxy-3-methylglutaryl coenzyme A reductase immunoinhibition curves by substrates and inhibitors. Evidence for conformational changes leading to alterations in antigenicity. J Biol Chem. 1982 Sep 25;257(18):10650–10658. [PubMed] [Google Scholar]
  32. Scizłowski P. W. The effect of some glycolytic intermediates and long-chain acyl-CoA esters on rat skeletal muscle mitochondrial alpha-glycerophosphate dehydrogenase. Mol Cell Biochem. 1977 Dec 29;18(2-3):93–99. doi: 10.1007/BF00280274. [DOI] [PubMed] [Google Scholar]
  33. Steele R. D. Transaminative metabolism of alpha-amino-n-butyrate in rats. Metabolism. 1982 Apr;31(4):318–325. doi: 10.1016/0026-0495(82)90106-8. [DOI] [PubMed] [Google Scholar]
  34. Steele R. D., Weber H., Patterson J. I. Characterization of alpha-ketobutyrate metabolism in rat tissues: effects of dietary protein and fasting. J Nutr. 1984 Apr;114(4):701–710. doi: 10.1093/jn/114.4.701. [DOI] [PubMed] [Google Scholar]
  35. Wieland O. H., Patzelt C., Löffler G. Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion. Eur J Biochem. 1972 Apr 11;26(3):426–433. doi: 10.1111/j.1432-1033.1972.tb01783.x. [DOI] [PubMed] [Google Scholar]
  36. Wolfe B. M., Kane J. P., Havel R. J., Brewster H. P. Mechanism of the hypolipemic effect of clofibrate in postabsorptive man. J Clin Invest. 1973 Sep;52(9):2146–2159. doi: 10.1172/JCI107399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yang W., Roth K. S. Defect in alpha-ketobutyrate metabolism: a new inborn error. Clin Chim Acta. 1985 Jan 30;145(2):173–182. doi: 10.1016/0009-8981(85)90284-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES