Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Mar 1;234(2):435–440. doi: 10.1042/bj2340435

Ornithine decarboxylase, transglutaminase, diamine oxidase and total diamines and polyamines in maternal liver and kidney throughout rat pregnancy.

M Piacentini, C Sartori, S Beninati, A M Bargagli, M P Cerù-Argento
PMCID: PMC1146583  PMID: 2872883

Abstract

Ornithine decarboxylase (ODC; EC 4.1.1.17), transglutaminase (EC 2.3.2.13), diamine oxidase (DAO; EC 1.4.3.6) and total di- and poly-amines were studied in rat liver and kidney cortex throughout pregnancy. In liver, ODC activity exhibited two major peaks (4.5-5 times the control activities) on days 15 and 17. Also putrescine and spermidine increased biphasically (3-4-fold), but no variation in spermine content was observed. Transglutaminase activity showed slight variations only near the end of gestation. In kidney, ODC activity did not fluctuate significantly during pregnancy, whereas both transglutaminase activity and putrescine content showed three major increases, in very early, middle and late pregnancy. No significant variations in spermidine and spermine were observed. In both organs, DAO activity, very low or undetectable until day 10, dramatically increased (10- and 20-fold in kidney and liver respectively) in the second half of pregnancy, reaching maxima on days 16-17 and 19. The results obtained for transglutaminase, ODC and total di- and poly-amines are interpreted on the basis of hyperplastic and hypertrophic events in the liver and kidney respectively. The behaviour of DAO suggests that the enzyme plays an important role in the control of intracellular diamine concentration.

Full text

PDF
435

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson A. C., Henningsson S. Metabolism of putrescine in the pregnant rat. Acta Physiol Scand. 1981 Dec;113(4):523–532. doi: 10.1111/j.1748-1716.1981.tb06932.x. [DOI] [PubMed] [Google Scholar]
  2. Atherton J. C., Green R. Renal function in pregnancy. Clin Sci (Lond) 1983 Nov;65(5):449–455. doi: 10.1042/cs0650449. [DOI] [PubMed] [Google Scholar]
  3. Atherton J. C., Pirie S. C. The effect of pregnancy on glomerular filtration rate and salt and water reabsorption in the rat. J Physiol. 1981;319:153–164. doi: 10.1113/jphysiol.1981.sp013898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beninati S., Piacentini M., Argento-Cerù M. P., Russo-Caia S., Autuori F. Presence of di- and polyamines covalently bound to protein in rat liver. Biochim Biophys Acta. 1985 Jul 26;841(1):120–126. doi: 10.1016/0304-4165(85)90281-8. [DOI] [PubMed] [Google Scholar]
  5. Birckbichler P. J., Orr G. R., Patterson M. K., Jr, Conway E., Carter H. A. Increase in proliferative markers after inhibition of transglutaminase. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5005–5008. doi: 10.1073/pnas.78.8.5005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brandt J. T., Pierce D. A., Fausto N. Ornithine decarboxylase activity and polyamine synthesis during kidney hypertrophy. Biochim Biophys Acta. 1972 Aug 18;279(1):184–193. doi: 10.1016/0304-4165(72)90253-x. [DOI] [PubMed] [Google Scholar]
  7. Campbell R. M., Fell B. F., Mackie W. S. Ornithine decarboxylase activity, nucleic acids and cell turnover in the livers of pregnant rats. J Physiol. 1974 Sep;241(3):699–713. doi: 10.1113/jphysiol.1974.sp010679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deitrich R. A., Erwin V. G. Involvement of biogenic amine metabolism in ethanol addiction. Fed Proc. 1975 Sep;34(10):1962–1968. [PubMed] [Google Scholar]
  9. Ewton D. Z., Erwin B. G., Pegg A. E., Florini J. R. The role of polyamines in somatomedin-stimulated differentiation of L6 myoblasts. J Cell Physiol. 1984 Sep;120(3):263–270. doi: 10.1002/jcp.1041200302. [DOI] [PubMed] [Google Scholar]
  10. Folk J. E., Cole P. W. Transglutaminase: mechanistic features of the active site as determined by kinetic and inhibitor studies. Biochim Biophys Acta. 1966 Aug 10;122(2):244–264. doi: 10.1016/0926-6593(66)90066-x. [DOI] [PubMed] [Google Scholar]
  11. Folk J. E. Transglutaminases. Annu Rev Biochem. 1980;49:517–531. doi: 10.1146/annurev.bi.49.070180.002505. [DOI] [PubMed] [Google Scholar]
  12. Fésüs L., Sándor M., Horváth L. I., Bagyinka C., Erdei A., Gergely J. Immune-complex-induced transglutaminase activation: its role in the Fc-receptor-mediated transmembrane effect on peritoneal macrophages. Mol Immunol. 1981 Jul;18(7):633–638. doi: 10.1016/0161-5890(81)90034-1. [DOI] [PubMed] [Google Scholar]
  13. Guha S. K., Jänne J. The synthesis and accumulation of polyamines in reproductive organs of the rat during pregnancy. Biochim Biophys Acta. 1976 Jun 23;437(1):244–252. doi: 10.1016/0304-4165(76)90366-4. [DOI] [PubMed] [Google Scholar]
  14. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  15. Hsu K. H., Friedman H. Dexamethasone inhibition of DMSO-induced transglutaminase activity and differentiation of leukemic cells. Proc Soc Exp Biol Med. 1984 Feb;175(2):205–210. doi: 10.3181/00379727-175-41789. [DOI] [PubMed] [Google Scholar]
  16. Jetten A. M., Shirley J. E. Inhibition of ornithine decarboxylase by retinoic acid and difluoromethylornithine in relation to their effects on differentiation and proliferation. Exp Cell Res. 1985 Jan;156(1):221–230. doi: 10.1016/0014-4827(85)90276-9. [DOI] [PubMed] [Google Scholar]
  17. KOBAYASHI Y. PLASMA DIAMINE OXIDASE TITRES OF NORMAL AND PREGNANT RATS. Nature. 1964 Jul 11;203:146–147. doi: 10.1038/203146a0. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Luk G. D., Baylin S. B. Inhibition of intestinal epithelial DNA synthesis and adaptive hyperplasia after jejunectomy in the rat by suppression of polyamine biosynthesis. J Clin Invest. 1984 Sep;74(3):698–704. doi: 10.1172/JCI111485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lundgren D. W., Farrell P. M., Cohen L. F., Hankins J. Fluctuations of unbound whole blood polyamine levels during the menstrual cycle. Proc Soc Exp Biol Med. 1976 May;152(1):81–85. doi: 10.3181/00379727-152-39333. [DOI] [PubMed] [Google Scholar]
  21. Mayel-Afshar S., Grimble R. F. Changes in protein turnover during gestation in the foetuses, placentas, liver, muscle and whole body of rats given a low-protein diet. Biochim Biophys Acta. 1983 Mar 31;756(2):182–190. doi: 10.1016/0304-4165(83)90090-9. [DOI] [PubMed] [Google Scholar]
  22. OKUYAMA T., KOBAYASHI Y. Determination of diamine oxidase activity by liquid scintillation counting. Arch Biochem Biophys. 1961 Nov;95:242–250. doi: 10.1016/0003-9861(61)90141-2. [DOI] [PubMed] [Google Scholar]
  23. Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
  24. Rice R. H., Green H. The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell. 1977 Jun;11(2):417–422. doi: 10.1016/0092-8674(77)90059-9. [DOI] [PubMed] [Google Scholar]
  25. Russell D., Snyder S. H. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1420–1427. doi: 10.1073/pnas.60.4.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scott K. F., Meyskens F. L., Jr, Russell D. H. Retinoids increase transglutaminase activity and inhibit ornithine decarboxylase activity in Chinese hamster ovary cells and in melanoma cells stimulated to differentiate. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4093–4097. doi: 10.1073/pnas.79.13.4093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seiler N. Use of the dansyl reaction in biochemical analysis. Methods Biochem Anal. 1970;18:259–337. doi: 10.1002/9780470110362.ch5. [DOI] [PubMed] [Google Scholar]
  28. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  29. Van Rooijen L. A., Derks H. J., Van Wijk R., Bisschop A. Relation between induction of rat hepatic ornithine decarboxylase activity by tumor promoters 12-O-tetradecanoylphorbol-13-acetate and phenobarbital and levels of the polyamines putrescine, spermidine and spermine, in vivo; differential effects of retinyl-acetate. Carcinogenesis. 1984 Feb;5(2):225–229. doi: 10.1093/carcin/5.2.225. [DOI] [PubMed] [Google Scholar]
  30. Williams-Ashman H. G., Canellakis Z. N. Transglutaminase-mediated covalent attachment of polyamines to proteins: mechanisms and potential physiological significance. Physiol Chem Phys. 1980;12(5):457–472. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES