Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Mar 15;234(3):659–664. doi: 10.1042/bj2340659

Effect of starvation or treatment with corticosterone on the amount of easily releasable myofilaments in rat skeletal muscles.

B Dahlmann, M Rutschmann, H Reinauer
PMCID: PMC1146622  PMID: 3718490

Abstract

Treatment of isolated myofibrils with an ATP-containing relaxing solution results in the dissociation of a preformed quantity of myofilaments called 'easily releasable myofilaments'. Van der Westhuyzen, Matsumoto & Etlinger [(1981) J. Biol. Chem. 256, 11791-11797] presented experimental evidence that these myofilaments represent intermediate products in the turnover of myofibrillar proteins. To investigate further this question, we measured the size of the fraction of easily releasable myofilaments in three different species of skeletal muscles from rats subjected to well-defined catabolic conditions, namely starvation or chronic glucocorticoid administration. The results were as follows: (1) The amount of easily releasable myofilaments was transiently increased about 2-3-fold during both experiments, and thus paralleled the known alterations in the rate of overall muscle protein breakdown rather than in those of synthesis. (2) These changes were observed in muscles containing predominantly fast-twitch fibres, but not in slow-twitch soleus muscle, a muscle that is known to be more resistant to catabolic conditions. (3) The starvation-induced increase of the size of the fraction of easily releasable myofilaments could be significantly reduced by treatment of the starving animals with the proteinase inhibitor E-64. These results are compatible with the idea that easily releasable myofilaments are intermediates in the degradative pathway of myofibrillar proteins and that a proteolytic step may be involved in the conversion of myofilaments into easily releasable myofilaments.

Full text

PDF
659

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  2. Bates P. C., Grimble G. K., Sparrow M. P., Millward D. J. Myofibrillar protein turnover. Synthesis of protein-bound 3-methylhistidine, actin, myosin heavy chain and aldolase in rat skeletal muscle in the fed and starved states. Biochem J. 1983 Aug 15;214(2):593–605. doi: 10.1042/bj2140593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beardall C. H., Johnston I. A. Muscle atrophy during starvation in a marine teleost. Eur J Cell Biol. 1983 Jan;29(2):209–217. [PubMed] [Google Scholar]
  4. Duque-Magalhães M. C. La protéolyse intracellulaire. Biochimie. 1984 Nov-Dec;66(11-12):653–662. doi: 10.1016/0300-9084(84)90254-2. [DOI] [PubMed] [Google Scholar]
  5. Etlinger J. D., Zak R., Fischman D. A. Compositional studies of myofibrils from rabbit striated muscle. J Cell Biol. 1976 Jan;68(1):123–141. doi: 10.1083/jcb.68.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Etlinger J. D., Zak R., Fischman D. A., Rabinowitz M. Isolation of newly synthesised myosin filaments from skeletal muscle homogenates and myofibrils. Nature. 1975 May 15;255(5505):259–261. doi: 10.1038/255259a0. [DOI] [PubMed] [Google Scholar]
  7. Frayn K. N., Maycock P. F. Regulation of protein metabolism by a physiological concentration of insulin in mouse soleus and extensor digitorum longus muscles. Effects of starvation and scald injury. Biochem J. 1979 Nov 15;184(2):323–330. doi: 10.1042/bj1840323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
  9. Goldberg A. L., Goodman H. M. Relationship between cortisone and muscle work in determining muscle size. J Physiol. 1969 Feb;200(3):667–675. doi: 10.1113/jphysiol.1969.sp008715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodman M. N., Larsen P. R., Kaplan M. M., Aoki T. T., Young V. R., Ruderman N. B. Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism. Am J Physiol. 1980 Oct;239(4):E277–E286. doi: 10.1152/ajpendo.1980.239.4.E277. [DOI] [PubMed] [Google Scholar]
  11. Goodman M. N., Lowell B., Belur E., Ruderman N. B. Sites of protein conservation and loss during starvation: influence of adiposity. Am J Physiol. 1984 May;246(5 Pt 1):E383–E390. doi: 10.1152/ajpendo.1984.246.5.E383. [DOI] [PubMed] [Google Scholar]
  12. Goodman M. N., Ruderman N. B. Starvation in the rat. I. Effect of age and obesity on organ weights, RNA, DNA, and protein. Am J Physiol. 1980 Oct;239(4):E269–E276. doi: 10.1152/ajpendo.1980.239.4.E269. [DOI] [PubMed] [Google Scholar]
  13. Hashida S., Towatari T., Kominami E., Katunuma N. Inhibitions by E-64 derivatives of rat liver cathepsin B and cathepsin L in vitro and in vivo. J Biochem. 1980 Dec;88(6):1805–1811. doi: 10.1093/oxfordjournals.jbchem.a133155. [DOI] [PubMed] [Google Scholar]
  14. Johnston I. A. Quantitative analysis of muscle breakdown during starvation in the marine flatfish Pleuronectes platessa. Cell Tissue Res. 1981;214(2):369–386. doi: 10.1007/BF00249218. [DOI] [PubMed] [Google Scholar]
  15. Li J. B., Goldberg A. L. Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol. 1976 Aug;231(2):441–448. doi: 10.1152/ajplegacy.1976.231.2.441. [DOI] [PubMed] [Google Scholar]
  16. Li J. B., Higgins J. E., Jefferson L. S. Changes in protein turnover in skeletal muscle in response to fasting. Am J Physiol. 1979 Mar;236(3):E222–E228. doi: 10.1152/ajpendo.1979.236.3.E222. [DOI] [PubMed] [Google Scholar]
  17. Li J. B., Wassner S. J. Effects of food deprivation and refeeding on total protein and actomyosin degradation. Am J Physiol. 1984 Jan;246(1 Pt 1):E32–E37. doi: 10.1152/ajpendo.1984.246.1.E32. [DOI] [PubMed] [Google Scholar]
  18. McGrath J. A., Goldspink D. F. Glucocorticoid action on protein synthesis and protein breakdown in isolated skeletal muscles. Biochem J. 1982 Sep 15;206(3):641–645. doi: 10.1042/bj2060641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Millward D. J., Garlick P. J., Nnanyelugo D. O., Waterlow J. C. The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem J. 1976 Apr 15;156(1):185–188. doi: 10.1042/bj1560185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Millward D. J. Protein turnover in skeletal muscle. II. The effect of starvation and a protein-free diet on the synthesis and catabolism of skeletal muscle proteins in comparison to liver. Clin Sci. 1970 Nov;39(5):591–603. doi: 10.1042/cs0390591. [DOI] [PubMed] [Google Scholar]
  21. Millward D. J., Waterlow J. C. Effect of nutrition on protein turnover in skeletal muscle. Fed Proc. 1978 Jul;37(9):2283–2290. [PubMed] [Google Scholar]
  22. Odedra B. R., Bates P. C., Millward D. J. Time course of the effect of catabolic doses of corticosterone on protein turnover in rat skeletal muscle and liver. Biochem J. 1983 Aug 15;214(2):617–627. doi: 10.1042/bj2140617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Santidrian S., Moreyra M., Munro H. N., Young V. R. Effect of corticosterone and its route of administration on muscle protein breakdown, measured in vivo by urinary excretion of N tau-methylhistidine in rats: response to different levels of dietary protein and energy. Metabolism. 1981 Aug;30(8):798–804. doi: 10.1016/0026-0495(81)90026-3. [DOI] [PubMed] [Google Scholar]
  24. Sims J. M., Patzer B., Kumudavalli-Reddy M., Martin A. F., Rabinowitz M., Zak R. The pathways of protein synthesis and degradation in normal heart and during development and regression of cardiac hypertrophy. Recent Adv Stud Cardiac Struct Metab. 1976 May 26;12:19–28. [PubMed] [Google Scholar]
  25. Sugita H., Ishiura S., Suzuki K., Imahori K. Inhibition of epoxide derivatives on chicken calcium-activated neutral protease (CANP) in vitro and in vivo. J Biochem. 1980 Jan;87(1):339–341. doi: 10.1093/oxfordjournals.jbchem.a132742. [DOI] [PubMed] [Google Scholar]
  26. Tomas F. M., Munro H. N., Young V. R. Effect of glucocorticoid administration on the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of N tau-methylhistidine. Biochem J. 1979 Jan 15;178(1):139–146. doi: 10.1042/bj1780139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van der Westhuyzen D. R., Matsumoto K., Etlinger J. D. Easily releasable myofilaments from skeletal and cardiac muscles maintained in vitro. Role in myofibrillar assembly and turnover. J Biol Chem. 1981 Nov 25;256(22):11791–11797. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES