Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Apr 1;235(1):183–187. doi: 10.1042/bj2350183

Carboxyl methylation of human erythrocyte band 3 in intact cells. Relation to anion transport activity.

L L Lou, S Clarke
PMCID: PMC1146666  PMID: 3741378

Abstract

The anion transport protein of the human erythrocyte membrane, band 3, is reversibly methylated by an endogenous protein carboxyl methyltransferase. The physiological consequence of this modification was studied by measuring the rate of phosphate transport by intact erythrocytes incubated under conditions where protein methylation reactions are inhibited. No change in phosphate transport was detected when cells were treated with either methionine-free media or cycloleucine, whereas cells incubated with adenosine and homocysteine thiolactone displayed a marginally slower rate of transport, which was not reversed by subsequent remethylation of the membrane proteins. These results suggest that erythrocyte protein carboxyl methylation does not directly regulate this activity of band 3.

Full text

PDF
183

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aswad D. W. Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25. Evidence for methylation at the alpha-carboxyl group of atypical L-isoaspartyl residues. J Biol Chem. 1984 Sep 10;259(17):10714–10721. [PubMed] [Google Scholar]
  2. Barber J. R., Clarke S. Inhibition of protein carboxyl methylation by S-adenosyl-L-homocysteine in intact erythrocytes. Physiological consequences. J Biol Chem. 1984 Jun 10;259(11):7115–7122. [PubMed] [Google Scholar]
  3. Barber J. R., Clarke S. Membrane protein carboxyl methylation increases with human erythrocyte age. Evidence for an increase in the number of methylatable sites. J Biol Chem. 1983 Jan 25;258(2):1189–1196. [PubMed] [Google Scholar]
  4. Boyd A., Kendall K., Simon M. I. Structure of the serine chemoreceptor in Escherichia coli. Nature. 1983 Feb 17;301(5901):623–626. doi: 10.1038/301623a0. [DOI] [PubMed] [Google Scholar]
  5. Cabantchik Z. I., Knauf P. A., Rothstein A. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of 'probes'. Biochim Biophys Acta. 1978 Sep 29;515(3):239–302. doi: 10.1016/0304-4157(78)90016-3. [DOI] [PubMed] [Google Scholar]
  6. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  7. Clarke S. Protein carboxyl methyltransferases: two distinct classes of enzymes. Annu Rev Biochem. 1985;54:479–506. doi: 10.1146/annurev.bi.54.070185.002403. [DOI] [PubMed] [Google Scholar]
  8. Freitag C., Clarke S. Reversible methylation of cytoskeletal and membrane proteins in intact human erythrocytes. J Biol Chem. 1981 Jun 25;256(12):6102–6108. [PubMed] [Google Scholar]
  9. Gagnon C., Heisler S. Protein carboxyl-methylation: role in exocytosis and chemotaxis. Life Sci. 1979 Sep 17;25(12):993–1000. doi: 10.1016/0024-3205(79)90583-6. [DOI] [PubMed] [Google Scholar]
  10. Galletti P., Paik W. K., Kim S. Selective methyl esterification of erythrocyte membrane proteins by protein methylase II. Biochemistry. 1978 Oct 3;17(20):4272–4276. doi: 10.1021/bi00613a025. [DOI] [PubMed] [Google Scholar]
  11. Ho M. K., Guidotti G. A membrane protein from human erythrocytes involved in anion exchange. J Biol Chem. 1975 Jan 25;250(2):675–683. [PubMed] [Google Scholar]
  12. Kehry M. R., Bond M. W., Hunkapiller M. W., Dahlquist F. W. Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3599–3603. doi: 10.1073/pnas.80.12.3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McFadden P. N., Clarke S. Methylation at D-aspartyl residues in erythrocytes: possible step in the repair of aged membrane proteins. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2460–2464. doi: 10.1073/pnas.79.8.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murray E. D., Jr, Clarke S. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues. J Biol Chem. 1984 Sep 10;259(17):10722–10732. [PubMed] [Google Scholar]
  15. O'Connor C. M., Clarke S. Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro. Saturation of intracellular sites in vivo. J Biol Chem. 1983 Jul 10;258(13):8485–8492. [PubMed] [Google Scholar]
  16. O'Dea R. F., Viveros O. H., Diliberto E. J., Jr Protein carboxymethylation: role in the regulation of cell functions. Biochem Pharmacol. 1981 Jun 1;30(11):1163–1168. doi: 10.1016/0006-2952(81)90292-6. [DOI] [PubMed] [Google Scholar]
  17. Oden K. L., Clarke S. S-adenosyl-L-methionine synthetase from human erythrocytes: role in the regulation of cellular S-adenosylmethionine levels. Biochemistry. 1983 Jun 7;22(12):2978–2986. doi: 10.1021/bi00281a030. [DOI] [PubMed] [Google Scholar]
  18. Ramjeesingh M., Grinstein S., Rothstein A. Intrinsic segments of band 3 that are associated with anion transport across red blood cell membranes. J Membr Biol. 1980 Dec 15;57(2):95–102. doi: 10.1007/BF01868996. [DOI] [PubMed] [Google Scholar]
  19. Springer M. S., Goy M. F., Adler J. Protein methylation in behavioural control mechanisms and in signal transduction. Nature. 1979 Jul 26;280(5720):279–284. doi: 10.1038/280279a0. [DOI] [PubMed] [Google Scholar]
  20. Terwilliger T. C., Clarke S. Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells. J Biol Chem. 1981 Mar 25;256(6):3067–3076. [PubMed] [Google Scholar]
  21. Terwilliger T. C., Koshland D. E., Jr Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis. J Biol Chem. 1984 Jun 25;259(12):7719–7725. [PubMed] [Google Scholar]
  22. Zimmerman T. P., Schmitges C. J., Wolberg G., Deeprose R. D., Duncan G. S., Cuatrecasas P., Elion G. B. Modulation of cyclic AMP metabolism by S-adenosylhomocysteine and S-3-deazaadenosylhomocysteine in mouse lymphocytes. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5639–5643. doi: 10.1073/pnas.77.10.5639. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES