Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Apr 15;235(2):441–445. doi: 10.1042/bj2350441

Hepatic glycogen synthesis on carbohydrate re-feeding after starvation. A regulatory role for pyruvate dehydrogenase in liver and extrahepatic tissues.

M J Holness, T J French, M C Sugden
PMCID: PMC1146706  PMID: 3741401

Abstract

Glucose administration to 48 h-starved rats increased hepatic glucose, lactate, pyruvate and glycogen concentrations and re-activated PDH (pyruvate dehydrogenase complex) in kidney, but not in heart or liver. Dichloroacetate together with glucose re-activated PDH in all three tissues, decreased hepatic lactate and pyruvate concentrations and impaired glycogen resynthesis. Thus on re-feeding, delayed PDH re-activation is important for provision of precursors for hepatic glyconeogenesis.

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Watts D. I., Sugden M. C. Effects of dichloroacetate on fatty acid synthesis in interscapular brown adipose tissue of the rat in vivo and in vitro. Horm Metab Res. 1983 Oct;15(10):482–485. doi: 10.1055/s-2007-1018764. [DOI] [PubMed] [Google Scholar]
  2. Agius L., Williamson D. H. Lipogenesis in interscapular brown adipose tissue of virgin, pregnant and lactating rats. The effects of intragastric feeding. Biochem J. 1980 Aug 15;190(2):477–480. doi: 10.1042/bj1900477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agius L., Williamson D. H. The utilization of ketone bodies by the interscapular brown adipose tissue of the rat. Biochim Biophys Acta. 1981 Oct 23;666(1):127–132. doi: 10.1016/0005-2760(81)90098-9. [DOI] [PubMed] [Google Scholar]
  4. Ashour B., Hansford R. G. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria. Biochem J. 1983 Sep 15;214(3):725–736. doi: 10.1042/bj2140725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackshear P. J., Holloway P. A., Alberti K. G. The metabolic effects of sodium dichloroacetate in the starved rat. Biochem J. 1974 Aug;142(2):279–286. doi: 10.1042/bj1420279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caterson I. D., Fuller S. J., Randle P. J. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53–60. doi: 10.1042/bj2080053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Claus T. H., Nyfeler F., Muenkel H. A., Burns M. G., Pate T., Pilkis S. J. Changes in key regulatory enzymes of hepatic carbohydrate metabolism after glucose loading of starved rats. Biochem Biophys Res Commun. 1984 Dec 14;125(2):655–661. doi: 10.1016/0006-291x(84)90589-8. [DOI] [PubMed] [Google Scholar]
  8. Crabb D. W., Yount E. A., Harris R. A. The metabolic effects of dichloroacetate. Metabolism. 1981 Oct;30(10):1024–1039. doi: 10.1016/0026-0495(81)90105-0. [DOI] [PubMed] [Google Scholar]
  9. Diamond M. P., Rollings R. C., Erlendson L., Williams P. E., Lacy W. W., Rabin D., Cherrington A. D. Dichloroacetate--its in vivo effects on carbohydrate metabolism in the conscious dog. Diabetes. 1980 Sep;29(9):702–709. doi: 10.2337/diab.29.9.702. [DOI] [PubMed] [Google Scholar]
  10. Foster D. W. Banting lecture 1984. From glycogen to ketones--and back. Diabetes. 1984 Dec;33(12):1188–1199. doi: 10.2337/diab.33.12.1188. [DOI] [PubMed] [Google Scholar]
  11. Fuller S. J., Randle P. J. Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal-muscle mitochondria. Effects of starvation and diabetes. Biochem J. 1984 Apr 15;219(2):635–646. doi: 10.1042/bj2190635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  13. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kerbey A. L., Radcliffe P. M., Randle P. J. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A. Biochem J. 1977 Jun 15;164(3):509–519. doi: 10.1042/bj1640509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerbey A. L., Randle P. J., Cooper R. H., Whitehouse S., Pask H. T., Denton R. M. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. 1976 Feb 15;154(2):327–348. doi: 10.1042/bj1540327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kerbey A. L., Randle P. J. Pyruvate dehydrogenase kinase/activator in rat heart mitochondria, Assay, effect of starvation, and effect of protein-synthesis inhibitors of starvation. Biochem J. 1982 Jul 15;206(1):103–111. doi: 10.1042/bj2060103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  18. Mooney R. A., Lane M. D. Control of ketogenesis and fatty-acid synthesis at the mitochondrial branch-point for acetyl-CoA in the chick liver cell: effect of adenosine 3',5'-monophosphate. Eur J Biochem. 1982 Jan;121(2):281–287. doi: 10.1111/j.1432-1033.1982.tb05783.x. [DOI] [PubMed] [Google Scholar]
  19. Newgard C. B., Hirsch L. J., Foster D. W., McGarry J. D. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. A direct or an indirect pathway? J Biol Chem. 1983 Jul 10;258(13):8046–8052. [PubMed] [Google Scholar]
  20. Nicholls T. J., Leese H. J., Bronk J. R. Transport and metabolism of glucose by rat small intestine. Biochem J. 1983 Apr 15;212(1):183–187. doi: 10.1042/bj2120183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nosadini R., Datta H., Hodson A., Alberti K. G. A possible mechanism for the anti-ketogenic action of alanine in the rat. Biochem J. 1980 Aug 15;190(2):323–332. doi: 10.1042/bj1900323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sale G. J., Randle P. J. Occupancy of phosphorylation sites in pyruvate dehydrogenase phosphate complex in rat heart in vivo. Relation to proportion of inactive complex and rate of re-activation by phosphatase. Biochem J. 1982 Aug 15;206(2):221–229. doi: 10.1042/bj2060221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Salmon D. M., Bowen N. L., Hems D. A. Synthesis of fatty acids in the perused mouse liver. Biochem J. 1974 Sep;142(3):611–618. doi: 10.1042/bj1420611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schofield P. S., French T. J., Goode A. W., Sugden M. C. Liver carnitine metabolism after partial hepatectomy in the rat. Effects of nutritional status and inhibition of carnitine palmitoyltransferase. FEBS Lett. 1985 May 20;184(2):214–220. doi: 10.1016/0014-5793(85)80609-8. [DOI] [PubMed] [Google Scholar]
  25. Siess E. A., Kientsch-Engel R. I., Wieland O. H. Concentration of free oxaloacetate in the mitochondrial compartment of isolated liver cells. Biochem J. 1984 Feb 15;218(1):171–176. doi: 10.1042/bj2180171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stansbie D., Brownsey R. W., Crettaz M., Denton R. M. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J. 1976 Nov 15;160(2):413–416. doi: 10.1042/bj1600413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sugden M. C., Watts D. I., Palmer T. N., Myles D. D. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochem Int. 1983 Sep;7(3):329–337. [PubMed] [Google Scholar]
  28. Sugden M. C., Watts D. L., Marshall C. E. Lipogenesis in response to an oral glucose load in fed and starved rats. Biosci Rep. 1981 Jun;1(6):469–476. doi: 10.1007/BF01121580. [DOI] [PubMed] [Google Scholar]
  29. Sugden P. H., Hutson N. J., Kerbey A. L., Randle P. J. Phosphorylation of additional sites on pyruvate dehydrogenase inhibits its re-activation by pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1978 Feb 1;169(2):433–435. doi: 10.1042/bj1690433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sugden P. H., Simister N. E. Role of multisite phosphorylation in the regulation of ox kidney pyruvate dehydrogenase complex. FEBS Lett. 1980 Mar 10;111(2):299–302. doi: 10.1016/0014-5793(80)80814-3. [DOI] [PubMed] [Google Scholar]
  31. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wieland O. H., Patzelt C., Löffler G. Active and inactive forms of pyruvate dehydrogenase in rat liver. Effect of starvation and refeeding and of insulin treatment on pyruvate-dehydrogenase interconversion. Eur J Biochem. 1972 Apr 11;26(3):426–433. doi: 10.1111/j.1432-1033.1972.tb01783.x. [DOI] [PubMed] [Google Scholar]
  34. Williamson D. H., Ilic V., Jones R. G. Evidence that the stimulation of lipogenesis in the mammary glands of starved lactating rats re-fed with a chow diet is dependent on continued hepatic gluconeogenesis during the absorptive period. Effects of a gluconeogenic inhibitory, mercaptopicolinic acid, in vivo. Biochem J. 1985 Jun 15;228(3):727–733. doi: 10.1042/bj2280727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Windmueller H. G., Spaeth A. E. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem. 1978 Jan 10;253(1):69–76. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES