Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Apr 15;235(2):545–552. doi: 10.1042/bj2350545

Regulation of Na+ transport in brown adipose tissue.

K F LaNoue, C Koch, D Strzelecka, T P Kobylski
PMCID: PMC1146719  PMID: 2943272

Abstract

In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.

Full text

PDF
545

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baginski E. S., Foà P. P., Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem. 1967 Apr;13(4):326–332. [PubMed] [Google Scholar]
  2. Davis E. J., Davis-van Thienen W. I. Control of mitochondrial metabolism by the ATP/ADP ratio. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1260–1266. doi: 10.1016/0006-291x(78)91357-8. [DOI] [PubMed] [Google Scholar]
  3. Faller L., Jackson R., Malinowska D., Mukidjam E., Rabon E., Saccomani G., Sachs G., Smolka A. Mechanistic aspects of gastric (H+ + K+)-ATPase. Ann N Y Acad Sci. 1982;402:146–163. doi: 10.1111/j.1749-6632.1982.tb25738.x. [DOI] [PubMed] [Google Scholar]
  4. Fink S. A., Williams J. A. Adrenergic receptors mediating depolarization in brown adipose tissue. Am J Physiol. 1976 Sep;231(3):700–706. doi: 10.1152/ajplegacy.1976.231.3.700. [DOI] [PubMed] [Google Scholar]
  5. Flaim K. E., Horwitz B. A., Horowitz J. M. Coupling of signals to brown fat: alpha- and beta-adrenergic responses in intact rats. Am J Physiol. 1977 Mar;232(3):R101–R109. doi: 10.1152/ajpregu.1977.232.3.R101. [DOI] [PubMed] [Google Scholar]
  6. Foster D. O., Frydman M. L. Comparison of microspheres and 86Rb+ as tracers of the distribution of cardiac output in rats indicates invalidity of 86Rb+-based measurements. Can J Physiol Pharmacol. 1978 Feb;56(1):97–109. doi: 10.1139/y78-014. [DOI] [PubMed] [Google Scholar]
  7. Foster D. O., Frydman M. L. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can J Physiol Pharmacol. 1978 Feb;56(1):110–122. doi: 10.1139/y78-015. [DOI] [PubMed] [Google Scholar]
  8. Foster D. O., Frydman M. L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol. 1979 Mar;57(3):257–270. doi: 10.1139/y79-039. [DOI] [PubMed] [Google Scholar]
  9. Girardier L., Schneider-Picard G. Alpha and beta-adrenergic mediation of membrane potential changes and metabolism in rat brown adipose tissue. J Physiol. 1983 Feb;335:629–641. doi: 10.1113/jphysiol.1983.sp014555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Girardier L., Seydoux J., Clausen T. Membrane potential of brown adipose tissue. A suggested mechanism for the regulation of thermogenesis. J Gen Physiol. 1968 Dec;52(6):925–940. doi: 10.1085/jgp.52.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heaton G. M., Nicholls D. G. The structural specificity of the nucleotide-binding site and the reversible nature of the inhibition of proton conductance induced by bound nucleotides in brown-adipose-tissue mitochondria. Biochem Soc Trans. 1977;5(1):210–212. doi: 10.1042/bst0050210. [DOI] [PubMed] [Google Scholar]
  12. Heaton G. M., Wagenvoord R. J., Kemp A., Jr, Nicholls D. G. Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem. 1978 Jan 16;82(2):515–521. doi: 10.1111/j.1432-1033.1978.tb12045.x. [DOI] [PubMed] [Google Scholar]
  13. Herd P. A., Hammond R. P., Hamolsky M. W. Sodium pump activity during norepinephrine-stimulated respiration in brown adipocytes. Am J Physiol. 1973 Jun;224(6):1300–1304. doi: 10.1152/ajplegacy.1973.224.6.1300. [DOI] [PubMed] [Google Scholar]
  14. Herd P. A., Horwitz B. A., Smith R. E. Norepinephrine-sensitive Na+-K+ ATPase activity in brown adipose tissue. Experientia. 1970 Aug 15;26(8):825–826. doi: 10.1007/BF02114197. [DOI] [PubMed] [Google Scholar]
  15. Hettinger D. R., Horwitz B. A. Kinetic characteristics of hamster (Mesocricetus auratus) brown fat (Na+/K+)-ATPase: effects of catecholamines. Comp Biochem Physiol C. 1983;74(2):355–360. doi: 10.1016/0742-8413(83)90114-7. [DOI] [PubMed] [Google Scholar]
  16. Himms-Hagen J. Cellular thermogenesis. Annu Rev Physiol. 1976;38:315–351. doi: 10.1146/annurev.ph.38.030176.001531. [DOI] [PubMed] [Google Scholar]
  17. Horowitz J. M., Horwitz B. A., Smith R. E. Effect in vivo of norepinephrine on the membrane resistance of brown fat cells. Experientia. 1971 Dec 15;27(12):1419–1421. doi: 10.1007/BF02154265. [DOI] [PubMed] [Google Scholar]
  18. Horwitz B. A. Cellular events underlying catecholamine-induced thermogenesis: cation transport in brown adipocytes. Fed Proc. 1979 Jul;38(8):2170–2176. [PubMed] [Google Scholar]
  19. Horwitz B. A., Eaton M. The effect of adrenergic agonists and cyclic AMP on the Na+/K+ ATPase activity of brown adipose tissue. Eur J Pharmacol. 1975 Nov;34(1):241–245. doi: 10.1016/0014-2999(75)90247-2. [DOI] [PubMed] [Google Scholar]
  20. Horwitz B. A., Horowitz J. M., Jr, Smith R. E. Norepinephrine-induced depolarization of brown fat cells. Proc Natl Acad Sci U S A. 1969 Sep;64(1):113–120. doi: 10.1073/pnas.64.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Horwitz B. A. Ouabain-sensitive component of brown fat thermogenesis. Am J Physiol. 1973 Feb;224(2):352–355. doi: 10.1152/ajplegacy.1973.224.2.352. [DOI] [PubMed] [Google Scholar]
  22. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem. 1978 Jun 25;253(12):4310–4318. [PubMed] [Google Scholar]
  23. Josephson L., Cantley L. C., Jr Isolation of a potent (Na-K)ATPase inhibitor from striated muscle. Biochemistry. 1977 Oct 18;16(21):4572–4578. doi: 10.1021/bi00640a006. [DOI] [PubMed] [Google Scholar]
  24. Kunz W., Bohnensack R., Böhme G., Küster U., Letko G., Schönfeld P. Relations between extramitochondrial and intramitochondrial adenine nucleotide systems. Arch Biochem Biophys. 1981 Jun;209(1):219–229. doi: 10.1016/0003-9861(81)90274-5. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. LaNoue K. F., Koch C. D., Meditz R. B. Mechanism of action of norepinephrine in hamster brown adipocytes. J Biol Chem. 1982 Nov 25;257(22):13740–13748. [PubMed] [Google Scholar]
  27. LaNoue K. F., Schoolwerth A. C., Pease A. J. Ammonia formation in isolated rat liver mitochondria. J Biol Chem. 1983 Feb 10;258(3):1726–1734. [PubMed] [Google Scholar]
  28. LaNoue K. F., Strzelecki T., Strzelecka D., Koch C. Regulation of the uncoupling protein in brown adipose tissue. J Biol Chem. 1986 Jan 5;261(1):298–305. [PubMed] [Google Scholar]
  29. Nedergaard J., Lindberg O. Norepinephrine-stimulated fatty-acid release and oxygen consumption in isolated hamster brown-fat cells. Influence of buffers, albumin, insulin and mitochondrial inhibitors. Eur J Biochem. 1979 Mar 15;95(1):139–145. doi: 10.1111/j.1432-1033.1979.tb12948.x. [DOI] [PubMed] [Google Scholar]
  30. Nicholls D. G. Hamster brown-adipose-tissue mitochondria. Purine nucleotide control of the ion conductance of the inner membrane, the nature of the nucleotide binding site. Eur J Biochem. 1976 Feb 16;62(2):223–228. doi: 10.1111/j.1432-1033.1976.tb10151.x. [DOI] [PubMed] [Google Scholar]
  31. Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiol Rev. 1984 Jan;64(1):1–64. doi: 10.1152/physrev.1984.64.1.1. [DOI] [PubMed] [Google Scholar]
  32. Nånberg E., Nedergaard J., Cannon B. Alpha-adrenergic effects on 86Rb+ (K+) potentials and fluxes in brown fat cells. Biochim Biophys Acta. 1984 Jul 20;804(3):291–300. doi: 10.1016/0167-4889(84)90132-0. [DOI] [PubMed] [Google Scholar]
  33. Prusiner S., Williamson J. R., Chance B., Paddle B. M. Pyridine nucleotide changes during thermogenesis in brown fat tissue in vivo. Arch Biochem Biophys. 1968 Feb;123(2):368–377. doi: 10.1016/0003-9861(68)90147-1. [DOI] [PubMed] [Google Scholar]
  34. Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Resh M. D., Nemenoff R. A., Guidotti G. Insulin stimulation of (Na+,K+)-adenosine triphosphatase-dependent 86Rb+ uptake in rat adipocytes. J Biol Chem. 1980 Nov 25;255(22):10938–10945. [PubMed] [Google Scholar]
  36. Rial E., Nicholls D. G. The mitochondrial uncoupling protein from guinea-pig brown adipose tissue. Synchronous increase in structural and functional parameters during cold-adaptation. Biochem J. 1984 Sep 15;222(3):685–693. doi: 10.1042/bj2220685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rothwell N. J., Stock M. J., Wyllie M. G. Na+, K+-ATPase activity and noradrenaline turnover in brown adipose tissue of rats exhibiting diet-induced thermogenesis. Biochem Pharmacol. 1981 Jun 15;30(12):1709–1712. doi: 10.1016/0006-2952(81)90404-4. [DOI] [PubMed] [Google Scholar]
  38. Sawas A. H., Gilbert J. C. Effects of adrenergic agonists and antagonists and of the catechol nucleus on the Na+, K+-ATPase and Mg2+-ATPase activities of synaptosomes. Biochem Pharmacol. 1981 Jul 1;30(13):1799–1803. doi: 10.1016/0006-2952(81)90013-7. [DOI] [PubMed] [Google Scholar]
  39. Wickler S. J., Horwitz B. A., Flaim S. F., LaNoue K. F. Isoproterenol-induced blood flow in rats acclimated to room temperature and cold. Am J Physiol. 1984 May;246(5 Pt 2):R747–R752. doi: 10.1152/ajpregu.1984.246.5.R747. [DOI] [PubMed] [Google Scholar]
  40. Williams J. A., Matthews E. K. Effects of ions and metabolic inhibitors on membrane potential of brown adipose tissue. Am J Physiol. 1974 Oct;227(4):981–986. doi: 10.1152/ajplegacy.1974.227.4.981. [DOI] [PubMed] [Google Scholar]
  41. Williams J. A., Matthews E. K. Membrane depolarization, cyclic AMP, and glycerol release by brown adipose tissue. Am J Physiol. 1974 Oct;227(4):987–992. doi: 10.1152/ajplegacy.1974.227.4.987. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES