Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 May 1;235(3):853–858. doi: 10.1042/bj2350853

Properties of the branched-chain 2-hydroxy acid/2-oxo acid shuttle in mouse spermatozoa.

C E Coronel, F G Gallina, N M Gerez de Burgos, C Burgos, A Blanco
PMCID: PMC1146765  PMID: 2875710

Abstract

Operation of the branched-chain 2-hydroxy acid/2-oxo acid shuttle for the transfer of reducing equivalents in mitochondria of mouse spermatozoa was studied in vitro in reconstituted systems. Results show that the branched-chain 2-oxo acids within the mitochondria are offered several metabolic pathways. (a) Decarboxylation: mouse sperm mitochondria possess high branched-chain 2-oxo acid decarboxylase activity. (b) Recycling to the cytosol by using a transport system which can be inhibited by alpha-cyano-3-hydroxycinnamate and pH 6.8. (c) Transamination to the corresponding amino acids: experiments presented indicate that leucine formed from 4-methyl-2-oxopentanoate may pass to the external phase, re-initiating the cycle. These two last possibilities would allow autocatalytic operation of the shuttle. The branched-chain 2-hydroxy acids apparently do not utilize the monocarboxylate carrier to penetrate the mitochondria.

Full text

PDF
853

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aki K., Ogawa K., Ichihara A. Transaminases of branched chain amino acids. IV. Purification and properties of two enzymes from rat liver. Biochim Biophys Acta. 1968 Jun 4;159(2):276–284. doi: 10.1016/0005-2744(68)90076-4. [DOI] [PubMed] [Google Scholar]
  2. Blanco A., Burgos C., Gerez de Burgos N. M., Montamat E. E. Properties of the testicular lactate dehydrogenase isoenzyme. Biochem J. 1976 Feb 1;153(2):165–172. doi: 10.1042/bj1530165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford N. M., McGivan J. D. Quantitative characteristics of glutamate transport in rat liver mitochondria. Biochem J. 1973 Aug;134(4):1023–1029. doi: 10.1042/bj1341023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bremer J., Davis E. J. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle. Biochim Biophys Acta. 1975 Mar 20;376(3):387–397. doi: 10.1016/0005-2728(75)90161-9. [DOI] [PubMed] [Google Scholar]
  5. Burgos C., Coronel C. E., de Burgos N. M., Rovai L. E., Blanco A. Studies in vitro on shuttle systems of mouse spermatozoa. Biochem J. 1982 Nov 15;208(2):413–417. doi: 10.1042/bj2080413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coronel C. E., Burgos C., Gerez de Burgos N. M., Rovai L. E., Blanco A. Catalytic properties of the sperm-specific lactate dehydrogenase (LDH X or C4) from different species. J Exp Zool. 1983 Mar;225(3):379–385. doi: 10.1002/jez.1402250305. [DOI] [PubMed] [Google Scholar]
  7. GUBLER C. J. Studies on the physiological functions of thiamine. I. The effects of thiamine deficiency and thiamine antagonists on the oxidation of alpha-keto acids by rat tissues. J Biol Chem. 1961 Dec;236:3112–3120. [PubMed] [Google Scholar]
  8. Goldberg E. Amino acid composition and properties of crystalline lactate dehydrogenase X from mouse testes. J Biol Chem. 1972 Apr 10;247(7):2044–2048. [PubMed] [Google Scholar]
  9. Halestrap A. P. Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier. Biochem J. 1978 Jun 15;172(3):377–387. doi: 10.1042/bj1720377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halestrap A. P. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J. 1975 Apr;148(1):85–96. doi: 10.1042/bj1480085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holian A., Owen C. S., Wilson D. F. Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on [ATP], [ADP], and [Pi]. Arch Biochem Biophys. 1977 May;181(1):164–171. doi: 10.1016/0003-9861(77)90494-5. [DOI] [PubMed] [Google Scholar]
  12. Hughes W. A., Halestrap A. P. The regulation of branched-chain 2-oxo acid dehydrogenase of liver, kidney and heart by phosphorylation. Biochem J. 1981 May 15;196(2):459–469. doi: 10.1042/bj1960459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hutson S. M., Van Dop C., Lardy H. A. Mitochondrial metabolism of pyruvate in bovine spermatozoa. J Biol Chem. 1977 Feb 25;252(4):1309–1315. [PubMed] [Google Scholar]
  14. Machado de Domenech E., Domenech C. E., Aoki A., Blanco A. Association of the testicular lactate dehydrogenase isozyme with a special type of mitochondria. Biol Reprod. 1972 Feb;6(1):136–147. doi: 10.1093/biolreprod/6.1.136. [DOI] [PubMed] [Google Scholar]
  15. Montamat E. E., Blanco A. Subcellular distribution of the lactate dehydrogenase isozyme specific for testis and sperm. Exp Cell Res. 1976 Dec;103(2):241–245. doi: 10.1016/0014-4827(76)90260-3. [DOI] [PubMed] [Google Scholar]
  16. Montamat E. E., Moreno J., Blanco A. Branched-chain amino acid aminotransferase in mouse testicular tissue. J Reprod Fertil. 1978 May;53(1):117–123. doi: 10.1530/jrf.0.0530117. [DOI] [PubMed] [Google Scholar]
  17. Mowbray J. A mitochondrial monocarboxylate transporter in rat liver and heart and its possible function in cell control. Biochem J. 1975 Apr;148(1):41–47. doi: 10.1042/bj1480041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Odessey R. Reversible ATP-induced inactivation of branched-chain 2-oxo acid dehydrogenase. Biochem J. 1980 Oct 15;192(1):155–163. doi: 10.1042/bj1920155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Storey B. T., Kayne F. J. Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria. Biol Reprod. 1977 May;16(4):549–556. [PubMed] [Google Scholar]
  20. Sullivan S. G., Dancis J., Cox R. P. Modulation of branched-chain alpha-keto acid decarboxylase activity in rat liver mitochondria by hypophysectomy. Arch Biochem Biophys. 1976 Sep;176(1):225–234. doi: 10.1016/0003-9861(76)90160-0. [DOI] [PubMed] [Google Scholar]
  21. Van Dop C., Hutson S. M., Lardy H. A. Pyruvate metabolism in bovine epididymal spermatozoa. J Biol Chem. 1977 Feb 25;252(4):1303–1308. [PubMed] [Google Scholar]
  22. Van Dop C., Hutson S. M., Lardy H. A. Selective inhibition of pyruvate and lactate metabolism in bovine epididymal spermatozoa by dinitrophenol and alpha-cyano-3-hydroxycinnamate. Arch Biochem Biophys. 1978 Apr 15;187(1):235–242. doi: 10.1016/0003-9861(78)90029-2. [DOI] [PubMed] [Google Scholar]
  23. de Burgos N. M., Burgos C., Montamat E. E., Moreno J., Blanco A. A shuttle system for the transfer of reducing equivalents in mouse sperm mitochondria. Biochem Biophys Res Commun. 1978 Mar 30;81(2):644–649. doi: 10.1016/0006-291x(78)91584-x. [DOI] [PubMed] [Google Scholar]
  24. de Domenech E. M., Domenech C. E., Blanco A. Distribution of lactate dehydrogenase isozymes in subcellular fractions of rat tissues. Arch Biochem Biophys. 1970 Nov;141(1):147–154. doi: 10.1016/0003-9861(70)90117-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES