Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 May 15;236(1):163–169. doi: 10.1042/bj2360163

Effects of liver regeneration on tRNA contents and aminoacyl-tRNA synthetase activities and sedimentation patterns.

U Del Monte, S Capaccioli, G Neri Cini, R Perego, R Caldini, M Chevanne
PMCID: PMC1146801  PMID: 3790068

Abstract

The tRNA content and aminoacyl-tRNA synthetases of regenerating liver in the phase of rapid growth were compared with those of livers from both intact and sham-operated rats. At 48 h after hepatectomy, the amount of active tRNA (called 'total acceptor capacity') is significantly higher in regenerating liver than in control livers, owing to a general, possibly not uniform, increase in the various tRNA families, which suggests that it may contribute to the increased protein synthesis and to decreased protein degradation as well. The activities of most, but not of all, aminoacyl-tRNA synthetases in cell sap of regenerating liver tend to be greater than normal. Increased activity of histidyl-tRNA synthetase fits in with the possibility that the mechanisms that control the rate of protein degradation through aminoacylation of tRNAHis in cultured cells [Scornik (1983) J. Biol. Chem. 258, 882-886] also operate in the liver and play a role in regeneration. Sedimentation analysis of cell sap in sucrose density gradients shows a shift of prolyl-tRNA synthetase activity toward the high-Mr form in regenerating liver. This change might be related to the positive protein balance and to growth in vivo, since it is also observed in the anaplastic Yoshida ascites hepatoma AH 130.

Full text

PDF
163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal M. K., Hanoune J., Weinstein I. B. Studies on transfer RNA population during liver regeneration in the rat. Biochim Biophys Acta. 1970 Nov 12;224(1):259–262. doi: 10.1016/0005-2787(70)90641-6. [DOI] [PubMed] [Google Scholar]
  2. Allen R. E., Raines P. L., Regen D. M. Regulatory significance of transfer RNA charging levels. I. Measurements of charging levels in livers of chow-fed rats, fasting rats, and rats fed balanced or imbalanced mixtures of amino acids. Biochim Biophys Acta. 1969 Oct 22;190(2):323–336. doi: 10.1016/0005-2787(69)90083-5. [DOI] [PubMed] [Google Scholar]
  3. Bucher N. L. Experimental aspects of hepatic regeneration. N Engl J Med. 1967 Sep 28;277(13):686–contd. doi: 10.1056/NEJM196709282771306. [DOI] [PubMed] [Google Scholar]
  4. Cajone F., Ferrero E., Bernelli-Zazzera A. Soluble factors and increase of protein synthesis in regenerating liver. Int J Biochem. 1980;11(5):341–346. doi: 10.1016/0020-711x(80)90303-1. [DOI] [PubMed] [Google Scholar]
  5. Ciechanover A., Wolin S. L., Steitz J. A., Lodish H. F. Transfer RNA is an essential component of the ubiquitin- and ATP-dependent proteolytic system. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1341–1345. doi: 10.1073/pnas.82.5.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark J. F., Jakoby W. B. Yeast aldehyde dehydrogenase. 3. Preparation of three homogeneous species. J Biol Chem. 1970 Nov 25;245(22):6065–6071. [PubMed] [Google Scholar]
  7. Damuni Z., Caudwell F. B., Cohen P. Regulation of the aminoacyl-tRNA synthetase complex of rat liver by phosphorylation/dephosphorylation in vitro and in vivo. Eur J Biochem. 1982 Dec;129(1):57–65. doi: 10.1111/j.1432-1033.1982.tb07020.x. [DOI] [PubMed] [Google Scholar]
  8. Del Monte U., Boddi V., Caldini R., Urbano P., Cini G. Analisi multivariata delle attività aminoacil-tRNA sintetasiche del fegato e degli epatomi. Tumori. 1975 May-Jun;61(3):304–312. [PubMed] [Google Scholar]
  9. Del Monte U., Cini G. Comparison of aminoacyl-tRNA synthetases from rat liver and hepatomas. FEBS Lett. 1972 Jan 15;20(1):33–36. doi: 10.1016/0014-5793(72)80010-3. [DOI] [PubMed] [Google Scholar]
  10. Deutscher M. P. The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol. 1984 Aug;99(2):373–377. doi: 10.1083/jcb.99.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Enger M. D., Ritter P. O., Hampel A. E. Altered aminoacyl-tRNA synthetase complexes in G1-arrested Chinese hamster ovary cells. Biochemistry. 1978 Jun 13;17(12):2435–2438. doi: 10.1021/bi00605a029. [DOI] [PubMed] [Google Scholar]
  12. GRISHAM J. W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962 Aug;22:842–849. [PubMed] [Google Scholar]
  13. HULTIN T., VON DER DECKEN A. The activity of soluble cytoplasmic constituents from regenerating rat liver in amino acid incorporating systems. Exp Cell Res. 1958 Dec;15(3):581–594. doi: 10.1016/0014-4827(58)90106-x. [DOI] [PubMed] [Google Scholar]
  14. Hampel A., Mansukhani A., Condon T. Cell culture mutants as aminoacyl-tRNA synthetase complex probes. Fed Proc. 1984 Dec;43(15):2991–2993. [PubMed] [Google Scholar]
  15. Hentzen D. Analysis of the transfer RNA population of mouse mammary glands infected with a latent mammary tumor virus. Cancer Res. 1976 Sep;36(9 PT1):3082–3085. [PubMed] [Google Scholar]
  16. Jackson C. D., Irving C. C., Sells B. H. Changes in rat liver transfer RNA following growth hormone administration and in regenerating liver. Biochim Biophys Acta. 1970 Sep 17;217(1):64–71. doi: 10.1016/0005-2787(70)90123-1. [DOI] [PubMed] [Google Scholar]
  17. KIPNIS D. M., REISS E., HELMREICH E. Functional heterogeneity of the intracellular amino acid pool in mammalian cells. Biochim Biophys Acta. 1961 Aug 19;51:519–524. doi: 10.1016/0006-3002(61)90608-4. [DOI] [PubMed] [Google Scholar]
  18. Katze J. R., Mason K. H. Comparison of the acceptance activity of the ribosome-bound and the total cellular transfer ribonucleic acids from SV40-transformed mouse fibroblasts. Biochim Biophys Acta. 1973 Dec 21;331(3):369–381. doi: 10.1016/0005-2787(73)90023-3. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Mays L. L., Lawrence A. E., Ho R. W., Ackley S. Age-related changes in function of transfer ribonucleic acid of rat livers. Fed Proc. 1979 May;38(6):1984–1988. [PubMed] [Google Scholar]
  21. Mirande M., Le Corre D., Waller J. P. A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases. Thermolabile leucyl-tRNA synthetase from the tsH1 mutant cell line is an integral component of this complex. Eur J Biochem. 1985 Mar 1;147(2):281–289. doi: 10.1111/j.1432-1033.1985.tb08748.x. [DOI] [PubMed] [Google Scholar]
  22. RENDI R. Incorporation of 14C-glycine into S-RNA and microsomes of normal and regenerating rat liver. Biochim Biophys Acta. 1959 Jan;31(1):266–268. doi: 10.1016/0006-3002(59)90472-x. [DOI] [PubMed] [Google Scholar]
  23. Richards E. G., Coll J. A., Gratzer W. B. Disc electrophoresis of ribonucleic acid in polyacrylamide gels. Anal Biochem. 1965 Sep;12(3):452–471. doi: 10.1016/0003-2697(65)90212-5. [DOI] [PubMed] [Google Scholar]
  24. Ritter P. O., Enger M. D., Hampel A. E. Characterization of postribosomal aminoacyl-tRNA synthetases in cultured Chinese hamster ovary cells. Biochim Biophys Acta. 1979 May 24;562(3):377–385. doi: 10.1016/0005-2787(79)90102-3. [DOI] [PubMed] [Google Scholar]
  25. Scornik O. A., Botbol V. Role of changes in protein degradation in the growth of regenerating livers. J Biol Chem. 1976 May 25;251(10):2891–2897. [PubMed] [Google Scholar]
  26. Scornik O. A. Faster protein degradation in response to decreases steady state levels of amino acylation of tRNAHis in Chinese hamster ovary cells. J Biol Chem. 1983 Jan 25;258(2):882–886. [PubMed] [Google Scholar]
  27. Scornik O. A. In vivo rate of translation by ribosomes of normal and regenerating liver. J Biol Chem. 1974 Jun 25;249(12):3876–3883. [PubMed] [Google Scholar]
  28. Shaw P. A., Tidwell J. T., Chia L. L., Randerath E., Randerath K. Base composition studies on transfer RNA from normal and regenerating rat liver. Biochim Biophys Acta. 1978 May 23;518(3):457–463. doi: 10.1016/0005-2787(78)90164-8. [DOI] [PubMed] [Google Scholar]
  29. Shenoy S. T., Rogers Q. R. Effect of starvation on the charging levels of transfer ribonucleic acid and total acceptor capacity in rat liver. Biochim Biophys Acta. 1977 Jun 3;476(3):218–227. doi: 10.1016/0005-2787(77)90005-3. [DOI] [PubMed] [Google Scholar]
  30. Tidwell T., Bruce B. J., Griffin A. C. Aminoacyl synthetases and isoaccepting transfer RNA's from normal and regenerating rat liver. Cancer Res. 1972 May;32(5):1002–1008. [PubMed] [Google Scholar]
  31. Van Dang C., Yang D. C. Disassembly and gross structure of particulate aminoacyl-tRNA synthetases from rat liver. Isolation and the structural relationship of synthetase complexes. J Biol Chem. 1979 Jun 25;254(12):5350–5356. [PubMed] [Google Scholar]
  32. Van Venrooij W. J., Moonen H., Van Loon-Klaassen L. Source of amino acids used for protein synthesis in HeLa cells. Eur J Biochem. 1974 Dec 16;50(1):297–304. doi: 10.1111/j.1432-1033.1974.tb03898.x. [DOI] [PubMed] [Google Scholar]
  33. Vennegoor C., Bloemendal H. Effect of a purified post-microsomal fraction on amino acid incorporation in vitro. Eur J Biochem. 1970 Jul;15(1):161–170. doi: 10.1111/j.1432-1033.1970.tb00991.x. [DOI] [PubMed] [Google Scholar]
  34. Wallyn C. S., Vidrich A., Airhart J., Khairallah E. A. Analysis of the specific radioactivity of valine isolated from aminoacyl-transfer ribonucleic acid of rat liver. Biochem J. 1974 Jun;140(3):545–548. doi: 10.1042/bj1400545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wust C. J., Rosen L. Aminoacylation and methylation of tRNA as a function of age in the rat. Exp Gerontol. 1972 Oct;7(5):331–343. doi: 10.1016/0531-5565(72)90041-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES