Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 May 15;236(1):243–249. doi: 10.1042/bj2360243

The effect of desferrioxamine on transferrin receptors, the cell cycle and growth rates of human leukaemic cells.

A Bomford, J Isaac, S Roberts, A Edwards, S Young, R Williams
PMCID: PMC1146812  PMID: 3790074

Abstract

The effect of the iron chelator, desferrioxamine, on transferrin binding, growth rates and the cell cycle was investigated in the human leukaemic cell line, K562. At all concentrations of the chelator (2-50 microM) binding of 125I-transferrin was increased by 24 h and reached a maximum at 72-96 h. Maximum binding (6-8-fold increased) occurred in cells treated with 20 microM-desferrioxamine, in contrast with control cells which, at 96 h, showed a 50% decrease over initial binding. Scatchard analysis at 4 degrees C showed that this increased binding was due to an increase in the number of receptors, as the Kd was similar in induced (1.8 nM) and control (1.5 nM) cells. After 96 h cells, cultured with 20 and 50 microM-desferrioxamine accumulated 59Fe from bovine transferrin at over twice the rate found with control cells, reflecting the increase in transferrin receptors. Although iron uptake was unimpaired by the chelator there was a dose-dependent inhibition of cell growth, with control cells completing three divisions in 96 h and those in 10 microM-desferrioxamine only two divisions. At the highest concentration (50 microM), cell division was abrogated although cell viability was maintained (85%). In contrast, DNA synthesis was not markedly affected, except at 50 microM-desferrioxamine when incorporation of [3H]thymidine was 52% of that in control cells. Flow cytometry revealed that there was a progressive accumulation of the cells in the active phases of their cycle (S, G2 + M). Desferrioxamine may increase transferrin receptors in two ways: by chelating a regulatory pool of iron within the cell, and by arresting cells in S phase when receptors are maximally expressed.

Full text

PDF
243

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bomford A., Young S. P., Nouri-Aria K., Williams R. Uptake and release of transferrin and iron by mitogen-stimulated human lymphocytes. Br J Haematol. 1983 Sep;55(1):93–101. doi: 10.1111/j.1365-2141.1983.tb01227.x. [DOI] [PubMed] [Google Scholar]
  2. Bomford A., Young S. P., Williams R. Release of iron from the two iron-binding sites of transferrin by cultured human cells: modulation by methylamine. Biochemistry. 1985 Jul 2;24(14):3472–3478. doi: 10.1021/bi00335a013. [DOI] [PubMed] [Google Scholar]
  3. Bottomley S. S., Wolfe L. C., Bridges K. R. Iron metabolism in K562 erythroleukemic cells. J Biol Chem. 1985 Jun 10;260(11):6811–6815. [PubMed] [Google Scholar]
  4. Bridges K. R., Cudkowicz A. Effect of iron chelators on the transferrin receptor in K562 cells. J Biol Chem. 1984 Nov 10;259(21):12970–12977. [PubMed] [Google Scholar]
  5. Cavill I. The preparation of 59 Fe-labelled transferrin for ferrokinetic studies. J Clin Pathol. 1971 Jul;24(5):472–474. doi: 10.1136/jcp.24.5.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cherington P. V., Smith B. L., Pardee A. B. Loss of epidermal growth factor requirement and malignant transformation. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3937–3941. doi: 10.1073/pnas.76.8.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chitambar C. R., Massey E. J., Seligman P. A. Regulation of transferrin receptor expression on human leukemic cells during proliferation and induction of differentiation. Effects of gallium and dimethylsulfoxide. J Clin Invest. 1983 Oct;72(4):1314–1325. doi: 10.1172/JCI111087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crissman H. A., Tobey R. A. Cell-cycle analysis in 20 minutes. Science. 1974 Jun 21;184(4143):1297–1298. doi: 10.1126/science.184.4143.1297. [DOI] [PubMed] [Google Scholar]
  9. Cuthbert J. A., Lipsky P. E. Immunoregulation by low density lipoproteins in man. Inhibition of mitogen-induced T lymphocyte proliferation by interference with transferrin metabolism. J Clin Invest. 1984 Apr;73(4):992–1003. doi: 10.1172/JCI111325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dickson R. B., Hanover J. A., Willingham M. C., Pastan I. Prelysosomal divergence of transferrin and epidermal growth factor during receptor-mediated endocytosis. Biochemistry. 1983 Nov 22;22(24):5667–5674. doi: 10.1021/bi00293a033. [DOI] [PubMed] [Google Scholar]
  11. Eriksson S., Gräslund A., Skog S., Thelander L., Tribukait B. Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunit M2 is regulated by de novo protein synthesis. J Biol Chem. 1984 Oct 10;259(19):11695–11700. [PubMed] [Google Scholar]
  12. Frazier J. L., Caskey J. H., Yoffe M., Seligman P. A. Studies of the transferrin receptor on both human reticulocytes and nucleated human cells in culture: comparison of factors regulating receptor density. J Clin Invest. 1982 Apr;69(4):853–865. doi: 10.1172/JCI110525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ganeshaguru K., Hoffbrand A. V., Grady R. W., Cerami A. Effect of various iron chelating agents on DNA synthesis in human cells. Biochem Pharmacol. 1980 May 1;29(9):1275–1279. doi: 10.1016/0006-2952(80)90285-3. [DOI] [PubMed] [Google Scholar]
  14. Gräslund A., Ehrenberg A., Thelander L. Characterization of the free radical of mammalian ribonucleotide reductase. J Biol Chem. 1982 May 25;257(10):5711–5715. [PubMed] [Google Scholar]
  15. Hamilton T. A., Wada H. G., Sussman H. H. Identification of transferrin receptors on the surface of human cultured cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6406–6410. doi: 10.1073/pnas.76.12.6406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoffbrand A. V., Ganeshaguru K., Hooton J. W., Tattersall M. H. Effect of iron deficiency and desferrioxamine on DNA synthesis in human cells. Br J Haematol. 1976 Aug;33(4):517–526. doi: 10.1111/j.1365-2141.1976.tb03570.x. [DOI] [PubMed] [Google Scholar]
  17. Hutchings S. E., Sato G. H. Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc Natl Acad Sci U S A. 1978 Feb;75(2):901–904. doi: 10.1073/pnas.75.2.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karin M., Mintz B. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem. 1981 Apr 10;256(7):3245–3252. [PubMed] [Google Scholar]
  19. Klausner R. D., Ashwell G., van Renswoude J., Harford J. B., Bridges K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2263–2266. doi: 10.1073/pnas.80.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Larrick J. W., Cresswell P. Transferrin receptors on human B and T lymphoblastoid cell lines. Biochim Biophys Acta. 1979 Apr 3;583(4):483–490. doi: 10.1016/0304-4165(79)90065-5. [DOI] [PubMed] [Google Scholar]
  21. Lederman H. M., Cohen A., Lee J. W., Freedman M. H., Gelfand E. W. Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation. Blood. 1984 Sep;64(3):748–753. [PubMed] [Google Scholar]
  22. Louache F., Testa U., Pelicci P., Thomopoulos P., Titeux M., Rochant H. Regulation of transferrin receptors in human hematopoietic cell lines. J Biol Chem. 1984 Sep 25;259(18):11576–11582. [PubMed] [Google Scholar]
  23. Mattia E., Rao K., Shapiro D. S., Sussman H. H., Klausner R. D. Biosynthetic regulation of the human transferrin receptor by desferrioxamine in K562 cells. J Biol Chem. 1984 Mar 10;259(5):2689–2692. [PubMed] [Google Scholar]
  24. Mendelsohn J., Trowbridge I., Castagnola J. Inhibition of human lymphocyte proliferation by monoclonal antibody to transferrin receptor. Blood. 1983 Oct;62(4):821–826. [PubMed] [Google Scholar]
  25. Musgrove E., Rugg C., Taylor I., Hedley D. Transferrin receptor expression during exponential and plateau phase growth of human tumour cells in culture. J Cell Physiol. 1984 Jan;118(1):6–12. doi: 10.1002/jcp.1041180103. [DOI] [PubMed] [Google Scholar]
  26. Perez-Infante V., Mather J. P. The role of transferrin in the growth of testicular cell lines in serum-free medium. Exp Cell Res. 1982 Dec;142(2):325–332. doi: 10.1016/0014-4827(82)90374-3. [DOI] [PubMed] [Google Scholar]
  27. Pollack S., Aisen P., Lasky F. D., Vanderhoff G. Chelate mediated transfer of iron from transferrin to desferrioxamine. Br J Haematol. 1976 Oct;34(2):231–235. doi: 10.1111/j.1365-2141.1976.tb00193.x. [DOI] [PubMed] [Google Scholar]
  28. Robbins E., Pederson T. Iron: its intracellular localization and possible role in cell division. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1244–1251. doi: 10.1073/pnas.66.4.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rudland P. S., Durbin H., Clingan D., de Asua L. J. Iron salts and transferrin are specifically required for cell division of cultured 3T6 cells. Biochem Biophys Res Commun. 1977 Apr 11;75(3):556–562. doi: 10.1016/0006-291x(77)91508-x. [DOI] [PubMed] [Google Scholar]
  30. Sutherland R., Delia D., Schneider C., Newman R., Kemshead J., Greaves M. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4515–4519. doi: 10.1073/pnas.78.7.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Testa U., Thomopoulos P., Vinci G., Titeux M., Bettaieb A., Vainchenker W., Rochant H. Transferrin binding to K562 cell line. Effect of heme and sodium butyrate induction. Exp Cell Res. 1982 Aug;140(2):251–260. doi: 10.1016/0014-4827(82)90112-4. [DOI] [PubMed] [Google Scholar]
  32. Thelander L., Reichard P. Reduction of ribonucleotides. Annu Rev Biochem. 1979;48:133–158. doi: 10.1146/annurev.bi.48.070179.001025. [DOI] [PubMed] [Google Scholar]
  33. Trowbridge I. S., Lopez F. Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1175–1179. doi: 10.1073/pnas.79.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trowbridge I. S., Omary M. B. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci U S A. 1981 May;78(5):3039–3043. doi: 10.1073/pnas.78.5.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ward J. H., Kushner J. P., Kaplan J. Regulation of HeLa cell transferrin receptors. J Biol Chem. 1982 Sep 10;257(17):10317–10323. [PubMed] [Google Scholar]
  36. Ward J. H., Kushner J. P., Kaplan J. Transferrin receptors of human fibroblasts. Analysis of receptor properties and regulation. Biochem J. 1982 Oct 15;208(1):19–26. doi: 10.1042/bj2080019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Young S. P., Bomford A., Williams R. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes. Biochem J. 1984 Apr 15;219(2):505–510. doi: 10.1042/bj2190505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van Renswoude J., Bridges K. R., Harford J. B., Klausner R. D. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. doi: 10.1073/pnas.79.20.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES