Abstract
Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berghäuser J. A reactive arginine in adenylate kinase. Biochim Biophys Acta. 1975 Aug 26;397(2):370–376. doi: 10.1016/0005-2744(75)90126-6. [DOI] [PubMed] [Google Scholar]
- Daemen F. J., Riordan J. F. Essential arginyl residues in Escherichia coli alkaline phosphatase. Biochemistry. 1974 Jul 2;13(14):2865–2871. doi: 10.1021/bi00711a014. [DOI] [PubMed] [Google Scholar]
- Harrigan P. J., Trentham D. R. Kinetic studies of the acylation of pig muscle D-glyceraldehyde 3-phosphate dehydrogenase by 1,3-diphosphoglycerate and of proton uptake and release in the overall enzyme mechanism. Biochem J. 1973 Dec;135(4):695–703. doi: 10.1042/bj1350695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lobb R. R., Stokes A. M., Hill H. A., Riordan J. F. A functional arginine residue in rabbit-muscle aldolase. Eur J Biochem. 1976 Nov 15;70(2):517–522. doi: 10.1111/j.1432-1033.1976.tb11043.x. [DOI] [PubMed] [Google Scholar]
- MILLAR D. B., SCHWERT G. W. LACTIC DEHYDROGENASE. IX. EFFECT OF PHOTO-OXIDATION UPON ACTIVITY AND COMPLEX FORMATION. J Biol Chem. 1963 Oct;238:3249–3255. [PubMed] [Google Scholar]
- Matthews R. G. Studies on the methylene/methyl interconversion catalyzed by methylenetetrahydrofolate reductase from pig liver. Biochemistry. 1982 Aug 17;21(17):4165–4171. doi: 10.1021/bi00260a038. [DOI] [PubMed] [Google Scholar]
- Nishikimi M., Kyogoku Y. Flavin-protein interaction in egg white flavoprotein. J Biochem. 1973 Jun;73(6):1233–1242. doi: 10.1093/oxfordjournals.jbchem.a130196. [DOI] [PubMed] [Google Scholar]
- Peterson D. L., Martinez-Carrion M. The mechanism of transamination. Function of the histidyl residue at the active site of supernatant aspartate transaminase. J Biol Chem. 1970 Feb 25;245(4):806–813. [PubMed] [Google Scholar]
- Riordan J. F. Arginyl residues and anion binding sites in proteins. Mol Cell Biochem. 1979 Jul 31;26(2):71–92. doi: 10.1007/BF00232886. [DOI] [PubMed] [Google Scholar]
- Riordan J. F., McElvany K. D., Borders C. L., Jr Arginyl residues: anion recognition sites in enzymes. Science. 1977 Mar 4;195(4281):884–886. doi: 10.1126/science.190679. [DOI] [PubMed] [Google Scholar]
- Wong S. S., Wong L. J. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase. Biochim Biophys Acta. 1981 Jul 24;660(1):142–147. doi: 10.1016/0005-2744(81)90119-4. [DOI] [PubMed] [Google Scholar]
