Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313

Structure and function of heparan sulphate proteoglycans.

J T Gallagher, M Lyon, W P Steward
PMCID: PMC1146843  PMID: 2944511

Full text

PDF
313

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alitalo K., Keski-Oja J., Hedman K., Vaheri A. Loss of different pericellular matrix components of rat cells transformed with a T-class ts mutant of Rous sarcoma virus. Virology. 1982 Jun;119(2):347–357. doi: 10.1016/0042-6822(82)90094-0. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. J., Fambrough D. M. Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. J Cell Biol. 1983 Nov;97(5 Pt 1):1396–1411. doi: 10.1083/jcb.97.5.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson M. J., Klier F. G., Tanguay K. E. Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction. J Cell Biol. 1984 Nov;99(5):1769–1784. doi: 10.1083/jcb.99.5.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bengtsson G., Olivecrona T., Hök M., Riesenfeld J., Lindahl U. Interaction of lipoprotein lipase with native and modified heparin-like polysaccharides. Biochem J. 1980 Sep 1;189(3):625–633. doi: 10.1042/bj1890625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhavanandan V. P., Davidson E. A. Mucopolysaccharides associated with nuclei of cultured mammalian cells. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2032–2036. doi: 10.1073/pnas.72.6.2032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bienkowski M. J., Conrad H. E. Kinetics of proteoheparan sulfate synthesis, secretion, endocytosis, and catabolism by a hepatocyte cell line. J Biol Chem. 1984 Nov 10;259(21):12989–12996. [PubMed] [Google Scholar]
  7. Bienkowski M. J., Conrad H. E. Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J Biol Chem. 1985 Jan 10;260(1):356–365. [PubMed] [Google Scholar]
  8. Bissell M. J., Hall H. G., Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982 Nov 7;99(1):31–68. doi: 10.1016/0022-5193(82)90388-5. [DOI] [PubMed] [Google Scholar]
  9. Bourdon M. A., Oldberg A., Pierschbacher M., Ruoslahti E. Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1321–1325. doi: 10.1073/pnas.82.5.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brandan E., Maldonado M., Garrido J., Inestrosa N. C. Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans. J Cell Biol. 1985 Sep;101(3):985–992. doi: 10.1083/jcb.101.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Buonassisi V., Colburn P. Antibodies to the heparan sulfate proteoglycans synthesized by endothelial cell cultures. Biochim Biophys Acta. 1983 Oct 4;760(1):1–12. doi: 10.1016/0304-4165(83)90118-6. [DOI] [PubMed] [Google Scholar]
  12. Carlstedt I., Cöster L., Malmström A., Fransson L. A. Proteoheparan sulfate from human skin fibroblasts. Isolation and structural characterization. J Biol Chem. 1983 Oct 10;258(19):11629–11635. [PubMed] [Google Scholar]
  13. Castellot J. J., Jr, Addonizio M. L., Rosenberg R., Karnovsky M. J. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J Cell Biol. 1981 Aug;90(2):372–379. doi: 10.1083/jcb.90.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Castellot J. J., Jr, Beeler D. L., Rosenberg R. D., Karnovsky M. J. Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. J Cell Physiol. 1984 Sep;120(3):315–320. doi: 10.1002/jcp.1041200309. [DOI] [PubMed] [Google Scholar]
  15. Cheng C. F., Oosta G. M., Bensadoun A., Rosenberg R. D. Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem. 1981 Dec 25;256(24):12893–12898. [PubMed] [Google Scholar]
  16. Cifonelli J. A., King J. A. Structural characteristics of heparan sulfates with varying sulfate contents. Biochemistry. 1977 May 17;16(10):2137–2141. doi: 10.1021/bi00629a014. [DOI] [PubMed] [Google Scholar]
  17. Cifonelli J. A., King J. The distribution of sulfated uronic acid and hexosamine residues in heparin and heparan sulfate. Connect Tissue Res. 1975;3(1):97–104. doi: 10.3109/03008207509152346. [DOI] [PubMed] [Google Scholar]
  18. Colburn P., Buonassisi V. Anti-clotting activity of endothelial cell cultures and heparan sulfate proteoglycans. Biochem Biophys Res Commun. 1982 Jan 15;104(1):220–227. doi: 10.1016/0006-291x(82)91962-3. [DOI] [PubMed] [Google Scholar]
  19. Cole G. J., Schubert D., Glaser L. Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol. 1985 Apr;100(4):1192–1199. doi: 10.1083/jcb.100.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Culp L. A., Murray B. A., Rollins B. J. Fibronectin and proteoglycans as determinants of cell-substratum adhesion. J Supramol Struct. 1979;11(3):401–427. doi: 10.1002/jss.400110314. [DOI] [PubMed] [Google Scholar]
  21. Culp L. A., Rollins B. J., Buniel J., Hitri S. Two functionally distinct pools of glycosaminoglycan in the substrate adhesion site of murine cells. J Cell Biol. 1978 Dec;79(3):788–801. doi: 10.1083/jcb.79.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Culp L. A., Rollins B. J., Buniel J., Hitri S. Two functionally distinct pools of glycosaminoglycan in the substrate adhesion site of murine cells. J Cell Biol. 1978 Dec;79(3):788–801. doi: 10.1083/jcb.79.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cöster L., Malström A., Carlstedt I., Fransson L. A. The core protein of fibroblast proteoheparan sulphate consists of disulphide-bonded subunits. Biochem J. 1983 Nov 1;215(2):417–419. doi: 10.1042/bj2150417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. David G., Van Den Berghe H. Transformed mouse mammary epithelial cells synthesize undersulfated basement membrane proteoglycan. J Biol Chem. 1983 Jun 25;258(12):7338–7344. [PubMed] [Google Scholar]
  25. David G., Van den Berghe H. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells. J Biol Chem. 1985 Sep 15;260(20):11067–11074. [PubMed] [Google Scholar]
  26. Del Rosso M., Cappelletti R., Viti M., Vannucchi S., Chiarugi V. Binding of the basement-membrane glycoprotein laminin to glycosaminoglycans. An affinity-chromatography study. Biochem J. 1981 Dec 1;199(3):699–704. doi: 10.1042/bj1990699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dziadek M., Fujiwara S., Paulsson M., Timpl R. Immunological characterization of basement membrane types of heparan sulfate proteoglycan. EMBO J. 1985 Apr;4(4):905–912. doi: 10.1002/j.1460-2075.1985.tb03717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Edgar D., Timpl R., Thoenen H. The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO J. 1984 Jul;3(7):1463–1468. doi: 10.1002/j.1460-2075.1984.tb01997.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fedarko N. S., Conrad H. E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol. 1986 Feb;102(2):587–599. doi: 10.1083/jcb.102.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Felts J. M., Staprans I., Gorman R. A. A glycosaminoglycan activator of lipoprotein lipase in human plasma. Life Sci. 1983 Apr 4;32(14):1659–1664. doi: 10.1016/0024-3205(83)90874-3. [DOI] [PubMed] [Google Scholar]
  31. Fenger M., Wewer U., Albrechtsen R. Basement membrane heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma. FEBS Lett. 1984 Jul 23;173(1):75–79. doi: 10.1016/0014-5793(84)81020-0. [DOI] [PubMed] [Google Scholar]
  32. Folkman J. Regulation of angiogenesis: a new function of heparin. Biochem Pharmacol. 1985 Apr 1;34(7):905–909. doi: 10.1016/0006-2952(85)90588-x. [DOI] [PubMed] [Google Scholar]
  33. Forsee W. T., Rodén L. Biosynthesis of heparin. Transfer of N-acetylglucosamine to heparan sulfate oligosaccharides. J Biol Chem. 1981 Jul 25;256(14):7240–7247. [PubMed] [Google Scholar]
  34. Fransson L. A., Carlstedt I., Cöster L., Malmström A. Binding of transferrin to the core protein of fibroblast proteoheparan sulfate. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5657–5661. doi: 10.1073/pnas.81.18.5657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Fransson L. A., Carlstedt I., Cöster L., Malmström A. Proteoheparan sulfate from human skin fibroblasts. Evidence for self-interaction via the heparan sulfate side chains. J Biol Chem. 1983 Dec 10;258(23):14342–14345. [PubMed] [Google Scholar]
  36. Fransson L. A., Cöster L., Carlstedt I., Malmström A. Domain structure of proteoheparan sulphate from confluent cultures of human embryonic skin fibroblasts. Biochem J. 1985 Nov 1;231(3):683–687. doi: 10.1042/bj2310683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Fransson L. A., Havsmark B., Nieduszynski I. A., Huckerby T. N. Interaction between heparan sulphate chains. II. Structural characterization of iduronate- and glucuronate-containing sequences in aggregating chains. Biochim Biophys Acta. 1980 Nov 17;633(1):95–104. doi: 10.1016/0304-4165(80)90041-0. [DOI] [PubMed] [Google Scholar]
  38. Fransson L. A., Havsmark B., Sheehan J. K. Self-association of heparan sulfate. Demonstration of binding by affinity chromatography of free chains on heparan sulfate-substituted agarose gels. J Biol Chem. 1981 Dec 25;256(24):13039–13043. [PubMed] [Google Scholar]
  39. Fransson L. A., Nieduszynski L. A., Sheehan J. K. Interaction between heparan sulphate chains. I. A gel chromatographic, light-scattering and structural study of aggregating and non-aggregating chains. Biochim Biophys Acta. 1980 Jun 19;630(2):287–300. doi: 10.1016/0304-4165(80)90433-x. [DOI] [PubMed] [Google Scholar]
  40. Fransson L. A. Self-association of bovine lung heparan sulphates: identification and characterization of contact zones. Eur J Biochem. 1981 Nov;120(2):251–255. doi: 10.1111/j.1432-1033.1981.tb05696.x. [DOI] [PubMed] [Google Scholar]
  41. Fransson L. A., Sjöberg I., Havsmark B. Structural studies on heparan sulphates. Characterization of oligosaccharides; obtained by periodate oxidation and alkaline elimination. Eur J Biochem. 1980 May;106(1):59–69. [PubMed] [Google Scholar]
  42. Fritze L. M., Reilly C. F., Rosenberg R. D. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J Cell Biol. 1985 Apr;100(4):1041–1049. doi: 10.1083/jcb.100.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Fujiwara S., Wiedemann H., Timpl R., Lustig A., Engel J. Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur J Biochem. 1984 Aug 15;143(1):145–157. doi: 10.1111/j.1432-1033.1984.tb08353.x. [DOI] [PubMed] [Google Scholar]
  44. Furukawa K., Bhavanandan V. P. Influences of anionic polysaccharides on DNA synthesis in isolated nuclei and by DNA polymerase alpha: correlation of observed effects with properties of the polysaccharides. Biochim Biophys Acta. 1983 Sep 9;740(4):466–475. doi: 10.1016/0167-4781(83)90096-9. [DOI] [PubMed] [Google Scholar]
  45. Gallagher J. T., Hampson I. N. Proteoglycans in cellular differentiation and neoplasia. Biochem Soc Trans. 1984 Jun;12(3):541–543. doi: 10.1042/bst0120541. [DOI] [PubMed] [Google Scholar]
  46. Gallagher J. T., Walker A. Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem J. 1985 Sep 15;230(3):665–674. doi: 10.1042/bj2300665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gamse G., Fromme H. G., Kresse H. Metabolism of sulfated glycosaminoglycans in cultured endothelial cells and smooth muscle cells from bovine aorta. Biochim Biophys Acta. 1978 Dec 18;544(3):514–528. doi: 10.1016/0304-4165(78)90326-4. [DOI] [PubMed] [Google Scholar]
  48. Glimelius B., Busch C., Hök M. Binding of heparin on the surface of cultured human endothelial cells. Thromb Res. 1978 May;12(5):773–782. doi: 10.1016/0049-3848(78)90271-2. [DOI] [PubMed] [Google Scholar]
  49. Glössl J., Schubert-Prinz R., Gregory J. D., Damle S. P., von Figura K., Kresse H. Receptor-mediated endocytosis of proteoglycans by human fibroblasts involves recognition of the protein core. Biochem J. 1983 Nov 1;215(2):295–301. doi: 10.1042/bj2150295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Gold L. I., Frangione B., Pearlstein E. Biochemical and immunological characterization of three binding sites on human plasma fibronectin with different affinities for heparin. Biochemistry. 1983 Aug 16;22(17):4113–4119. doi: 10.1021/bi00286a019. [DOI] [PubMed] [Google Scholar]
  51. Greenburg G., Gospodarowicz D. Inactivation of a basement membrane component responsible for cell proliferation but not for cell attachment. Exp Cell Res. 1982 Jul;140(1):1–14. doi: 10.1016/0014-4827(82)90149-5. [DOI] [PubMed] [Google Scholar]
  52. Greif K. F., Reichardt L. F. Appearance and distribution of neuronal cell surface and synaptic vesicle antigens in the developing rat superior cervical ganglion. J Neurosci. 1982 Jul;2(7):843–852. doi: 10.1523/JNEUROSCI.02-07-00843.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Greif K. F., Trenchard H. I. Evidence for transsynaptic regulation of neuronal cell surface heparan sulfate proteoglycan in developing rat superior cervical ganglion. J Cell Biochem. 1984;26(2):127–133. doi: 10.1002/jcb.240260208. [DOI] [PubMed] [Google Scholar]
  54. Hahn P. F. ABOLISHMENT OF ALIMENTARY LIPEMIA FOLLOWING INJECTION OF HEPARIN. Science. 1943 Jul 2;98(2531):19–20. doi: 10.1126/science.98.2531.19. [DOI] [PubMed] [Google Scholar]
  55. Hampson I. N., Gallagher J. T. Separation of radiolabelled glycosaminoglycan oligosaccharides by polyacrylamide-gel electrophoresis. Biochem J. 1984 Aug 1;221(3):697–705. doi: 10.1042/bj2210697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Hampson I. N., Kumar S., Gallagher J. T. Heterogeneity of cell-associated and secretory heparan sulphate proteoglycans produced by cultured human neuroblastoma cells. Biochim Biophys Acta. 1984 Sep 28;801(2):306–313. doi: 10.1016/0304-4165(84)90081-3. [DOI] [PubMed] [Google Scholar]
  57. Hardingham T. E., Ewins R. J., Muir H. Cartilage proteoglycans. Structure and heterogeneity of the protein core and the effects of specific protein modifications on the binding to hyaluronate. Biochem J. 1976 Jul 1;157(1):127–143. doi: 10.1042/bj1570127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Hassell J. R., Leyshon W. C., Ledbetter S. R., Tyree B., Suzuki S., Kato M., Kimata K., Kleinman H. K. Isolation of two forms of basement membrane proteoglycans. J Biol Chem. 1985 Jul 5;260(13):8098–8105. [PubMed] [Google Scholar]
  59. Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hay E. D. Extracellular matrix. J Cell Biol. 1981 Dec;91(3 Pt 2):205s–223s. doi: 10.1083/jcb.91.3.205s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hayman E. G., Oldberg A., Martin G. R., Ruoslahti E. Codistribution of heparan sulfate proteoglycan, laminin, and fibronectin in the extracellular matrix of normal rat kidney cells and their coordinate absence in transformed cells. J Cell Biol. 1982 Jul;94(1):28–35. doi: 10.1083/jcb.94.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Hedman K., Johansson S., Vartio T., Kjellén L., Vaheri A., Hök M. Structure of the pericellular matrix: association of heparan and chondroitin sulfates with fibronectin-procollagen fibers. Cell. 1982 Mar;28(3):663–671. doi: 10.1016/0092-8674(82)90221-5. [DOI] [PubMed] [Google Scholar]
  63. Helting T., Lindahl U. Biosynthesis of heparin. I. Transfer of N-acetylglucosamine and glucuronic acid to low-molecular weight heparin fragments. Acta Chem Scand. 1972;26(9):3515–3523. doi: 10.3891/acta.chem.scand.26-3515. [DOI] [PubMed] [Google Scholar]
  64. Hurst R. E., Parmley R. T., Nakamura N., West S. S., Denys F. R. Heparan sulfate of AH-130 ascites hepatoma cells: a cell-surface glycosaminoglycan not displaced by heparin. J Histochem Cytochem. 1981 Jun;29(6):731–737. doi: 10.1177/29.6.6166666. [DOI] [PubMed] [Google Scholar]
  65. Hök M., Kjellén L., Johansson S. Cell-surface glycosaminoglycans. Annu Rev Biochem. 1984;53:847–869. doi: 10.1146/annurev.bi.53.070184.004215. [DOI] [PubMed] [Google Scholar]
  66. Hök M., Wasteson A., Oldberg A. A heparan sulfate-degrading endoglycosidase from rat liver tissue. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1422–1428. doi: 10.1016/0006-291x(75)90185-0. [DOI] [PubMed] [Google Scholar]
  67. Inestrosa N. C., Matthew W. D., Reiness C. G., Hall Z. W., Reichardt L. F. Atypical distribution of asymmetric acetylcholinesterase in mutant PC12 pheochromocytoma cells lacking a cell surface heparan sulfate proteoglycan. J Neurochem. 1985 Jul;45(1):86–94. doi: 10.1111/j.1471-4159.1985.tb05478.x. [DOI] [PubMed] [Google Scholar]
  68. Iozzo R. V. Biosynthesis of heparan sulfate proteoglycan by human colon carcinoma cells and its localization at the cell surface. J Cell Biol. 1984 Aug;99(2):403–417. doi: 10.1083/jcb.99.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Iozzo R. V., Wight T. N. Isolation and characterization of proteoglycans synthesized by human colon and colon carcinoma. J Biol Chem. 1982 Sep 25;257(18):11135–11144. [PubMed] [Google Scholar]
  70. Jacobsson I., Hök M., Pettersson I., Lindahl U., Larm O., Wirén E., von Figura K. Identification of N-sulphated disaccharide units in heparin-like polysaccharides. Biochem J. 1979 Apr 1;179(1):77–87. doi: 10.1042/bj1790077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Jacobsson I., Lindahl U. Biosynthesis of heparin. Concerted action of late polymer-modification reactions. J Biol Chem. 1980 Jun 10;255(11):5094–5100. [PubMed] [Google Scholar]
  72. Jacobsson I., Lindahl U., Jensen J. W., Rodén L., Prihar H., Feingold D. S. Biosynthesis of heparin. Substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase. J Biol Chem. 1984 Jan 25;259(2):1056–1063. [PubMed] [Google Scholar]
  73. Jilek F., Hörmann H. Fibronectin (cold-insoluble globulin), VI. Influence of heparin and hyaluronic acid on the binding of native collagen. Hoppe Seylers Z Physiol Chem. 1979 Apr;360(4):597–603. doi: 10.1515/bchm2.1979.360.1.597. [DOI] [PubMed] [Google Scholar]
  74. Johansson S. Demonstration of high affinity fibronectin receptors on rat hepatocytes in suspension. J Biol Chem. 1985 Feb 10;260(3):1557–1561. [PubMed] [Google Scholar]
  75. Johansson S., Hök M. Heparin enhances the rate of binding of fibronectin to collagen. Biochem J. 1980 May 1;187(2):521–524. doi: 10.1042/bj1870521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Johansson S., Hök M. Substrate adhesion of rat hepatocytes: on the mechanism of attachment to fibronectin. J Cell Biol. 1984 Mar;98(3):810–817. doi: 10.1083/jcb.98.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Jones R. T., Walker J. H., Stadler H., Whittaker V. P. Further evidence that glycosaminoglycan specific to cholinergic synaptic vesicles recycles during electrical stimulation of the electric organ of Torpedo marmorata. Cell Tissue Res. 1982;224(3):685–688. doi: 10.1007/BF00213763. [DOI] [PubMed] [Google Scholar]
  78. Kanwar Y. S., Hascall V. C., Farquhar M. G. Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane. J Cell Biol. 1981 Aug;90(2):527–532. doi: 10.1083/jcb.90.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Kanwar Y. S., Veis A., Kimura J. H., Jakubowski M. L. Characterization of heparan sulfate-proteoglycan of glomerular basement membranes. Proc Natl Acad Sci U S A. 1984 Feb;81(3):762–766. doi: 10.1073/pnas.81.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Kawakami H., Terayama H. Liver plasma membranes and proteoglycan prepared therefrom inhibit the growth of hepatoma cells in vitro. Biochim Biophys Acta. 1981 Aug 6;646(1):161–168. doi: 10.1016/0005-2736(81)90283-2. [DOI] [PubMed] [Google Scholar]
  82. Keller K. L., Keller J. M., Moy J. N. Heparan sulfates from Swiss mouse 3T3 and SV3T3 cells: O-sulfate difference. Biochemistry. 1980 May 27;19(11):2529–2536. doi: 10.1021/bi00552a035. [DOI] [PubMed] [Google Scholar]
  83. Kelly R. B., Buckley K. M., Burgess T. L., Carlson S. S., Caroni P., Hooper J. E., Katzen A., Moore H. P., Pfeffer S. R., Schroer T. A. Membrane traffic in neurons and peptide-secreting cells. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):697–705. doi: 10.1101/sqb.1983.048.01.073. [DOI] [PubMed] [Google Scholar]
  84. Kinoshita S. Heparin as a possible initiator of genomic RNA synthesis in early development of sea urchin embryos. Exp Cell Res. 1971 Feb;64(2):403–411. doi: 10.1016/0014-4827(71)90094-2. [DOI] [PubMed] [Google Scholar]
  85. Kinoshita S. Properties of sea urchin chromatin as revealed by means of thermal denaturation. Exp Cell Res. 1976 Oct 1;102(1):153–161. doi: 10.1016/0014-4827(76)90310-4. [DOI] [PubMed] [Google Scholar]
  86. Kinoshita S., Saiga H. The role of proteoglycan in the development of sea urchins. I. Abnormal development of sea urchin embryos caused by the disturbance of proteoglycan synthesis. Exp Cell Res. 1979 Oct 15;123(2):229–236. doi: 10.1016/0014-4827(79)90463-4. [DOI] [PubMed] [Google Scholar]
  87. Kinoshita S. Some observations on a protein-mucopolysaccharide complex found in sea urchin embryos. Exp Cell Res. 1974 Mar 30;85(1):31–40. doi: 10.1016/0014-4827(74)90209-2. [DOI] [PubMed] [Google Scholar]
  88. Kinoshita S., Yoshii K. The role of proteoglycan synthesis in the development of sea urchins. II. The effect of administration of exogenous proteoglycan. Exp Cell Res. 1979 Dec;124(2):361–369. doi: 10.1016/0014-4827(79)90211-8. [DOI] [PubMed] [Google Scholar]
  89. Kjellén L., Oldberg A., Hök M. Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem. 1980 Nov 10;255(21):10407–10413. [PubMed] [Google Scholar]
  90. Kjellén L., Oldberg A., Rubin K., Hök M. Binding of heparin and heparan sulphate to rat liver cells. Biochem Biophys Res Commun. 1977 Jan 10;74(1):126–133. doi: 10.1016/0006-291x(77)91384-5. [DOI] [PubMed] [Google Scholar]
  91. Kjellén L., Pettersson I., Hök M. Cell-surface heparan sulfate: an intercalated membrane proteoglycan. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5371–5375. doi: 10.1073/pnas.78.9.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Kleinman H. K., McGarvey M. L., Hassell J. R., Martin G. R. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry. 1983 Oct 11;22(21):4969–4974. doi: 10.1021/bi00290a014. [DOI] [PubMed] [Google Scholar]
  93. Klinger M. M., Margolis R. U., Margolis R. K. Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase-agarose. J Biol Chem. 1985 Apr 10;260(7):4082–4090. [PubMed] [Google Scholar]
  94. Kobayashi S., Oguri K., Kobayashi K., Okayama M. Isolation and characterization of proteoheparan sulfate synthesized in vitro by rat glomeruli. J Biol Chem. 1983 Oct 10;258(19):12051–12057. [PubMed] [Google Scholar]
  95. Koda J. E., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Basal extracellular proteoglycan binds specifically to native type I collagen fibrils. J Biol Chem. 1984 Oct 10;259(19):11763–11770. [PubMed] [Google Scholar]
  96. Koda J. E., Rapraeger A., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem. 1985 Jul 5;260(13):8157–8162. [PubMed] [Google Scholar]
  97. Kraemer P. M. Heparan sulfates of cultured cells. I. Membrane-associated and cell-sap species in Chinese hamster cells. Biochemistry. 1971 Apr 13;10(8):1437–1445. doi: 10.1021/bi00784a026. [DOI] [PubMed] [Google Scholar]
  98. Kraemer P. M. Heparan sulfates of cultured cells. II. Acid-soluble and -precipitable species of different cell lines. Biochemistry. 1971 Apr 13;10(8):1445–1451. doi: 10.1021/bi00784a027. [DOI] [PubMed] [Google Scholar]
  99. Kraemer P. M. Heparin releases heparan sulfate from the cell surface. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1334–1340. doi: 10.1016/0006-291x(77)91438-3. [DOI] [PubMed] [Google Scholar]
  100. Kramer R. H., Vogel K. G., Nicolson G. L. Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J Biol Chem. 1982 Mar 10;257(5):2678–2686. [PubMed] [Google Scholar]
  101. Lander A. D., Tomaselli K., Calof A. L., Reichardt L. F. Studies on extracellular matrix components that promote neurite outgrowth. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):611–623. doi: 10.1101/sqb.1983.048.01.065. [DOI] [PubMed] [Google Scholar]
  102. Laterra J., Ansbacher R., Culp L. A. Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murine fibroblasts. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6662–6666. doi: 10.1073/pnas.77.11.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Laurie G. W., Leblond C. P., Martin G. R. Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol. 1982 Oct;95(1):340–344. doi: 10.1083/jcb.95.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Ledbetter S. R., Tyree B., Hassell J. R., Horigan E. A. Identification of the precursor protein to basement membrane heparan sulfate proteoglycans. J Biol Chem. 1985 Jul 5;260(13):8106–8113. [PubMed] [Google Scholar]
  105. Leivo I. Basement membrane-like matrix of teratocarcinoma-derived endodermal cells: presence of laminin and heparan sulfate in the matrix at points of attachment to cells. J Histochem Cytochem. 1983 Jan;31(1):35–45. doi: 10.1177/31.1.6187802. [DOI] [PubMed] [Google Scholar]
  106. Lindahl U., Bäckström G., Thunberg L., Leder I. G. Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6551–6555. doi: 10.1073/pnas.77.11.6551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Lindahl U., Hök M. Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem. 1978;47:385–417. doi: 10.1146/annurev.bi.47.070178.002125. [DOI] [PubMed] [Google Scholar]
  108. Linker A., Hovingh P. The heparitin sulfates (heparan sulfates). Carbohydr Res. 1973 Jul;29(1):41–62. doi: 10.1016/s0008-6215(00)82069-8. [DOI] [PubMed] [Google Scholar]
  109. Linker A., Hovingh P. The uses of degradative enzymes as tools for identification and structural analysis of glycosaminoglycans. Fed Proc. 1977 Jan;36(1):43–46. [PubMed] [Google Scholar]
  110. Linker A. Structure of heparan sulphate oligosaccharides and their degradation by exo-enzymes. Biochem J. 1979 Dec 1;183(3):711–720. doi: 10.1042/bj1830711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Long W. F., Williamson F. B. Heparan structure and the modulation of angiogenesis. Med Hypotheses. 1984 Apr;13(4):385–394. doi: 10.1016/0306-9877(84)90071-9. [DOI] [PubMed] [Google Scholar]
  112. Marcum J. A., McKenney J. B., Rosenberg R. D. Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike molecules bound to the endothelium. J Clin Invest. 1984 Aug;74(2):341–350. doi: 10.1172/JCI111429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Marcum J. A., Rosenberg R. D. Anticoagulantly active heparin-like molecules from vascular tissue. Biochemistry. 1984 Apr 10;23(8):1730–1737. doi: 10.1021/bi00303a023. [DOI] [PubMed] [Google Scholar]
  114. Marcum J. A., Rosenberg R. D. Heparinlike molecules with anticoagulant activity are synthesized by cultured endothelial cells. Biochem Biophys Res Commun. 1985 Jan 16;126(1):365–372. doi: 10.1016/0006-291x(85)90615-1. [DOI] [PubMed] [Google Scholar]
  115. Margolis R. U., Margolis R. K., Chang L. B., Preti C. Glycosaminoglycans of brain during development. Biochemistry. 1975 Jan 14;14(1):85–88. doi: 10.1021/bi00672a014. [DOI] [PubMed] [Google Scholar]
  116. Matthew W. D., Greenspan R. J., Lander A. D., Reichardt L. F. Immunopurification and characterization of a neuronal heparan sulfate proteoglycan. J Neurosci. 1985 Jul;5(7):1842–1850. doi: 10.1523/JNEUROSCI.05-07-01842.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Matthew W. D., Patterson P. H. The production of a monoclonal antibody that blocks the action of a neurite outgrowth-promoting factor. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):625–631. doi: 10.1101/sqb.1983.048.01.066. [DOI] [PubMed] [Google Scholar]
  118. Mutoh S., Funakoshi I., Ui N., Yamashina I. Structural characterization of proteoheparan sulfate isolated from plasma membranes of an ascites hepatoma, AH 66. Arch Biochem Biophys. 1980 Jun;202(1):137–143. doi: 10.1016/0003-9861(80)90415-4. [DOI] [PubMed] [Google Scholar]
  119. Mynderse L. A., Hassell J. R., Kleinman H. K., Martin G. R., Martinez-Hernandez A. Loss of heparan sulfate proteoglycan from glomerular basement membrane of nephrotic rats. Lab Invest. 1983 Mar;48(3):292–302. [PubMed] [Google Scholar]
  120. Nakajima M., Irimura T., Di Ferrante D., Di Ferrante N., Nicolson G. L. Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science. 1983 May 6;220(4597):611–613. doi: 10.1126/science.6220468. [DOI] [PubMed] [Google Scholar]
  121. Nakajima M., Irimura T., Di Ferrante N., Nicolson G. L. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem. 1984 Feb 25;259(4):2283–2290. [PubMed] [Google Scholar]
  122. Norling B., Glimelius B., Wasteson A. Heparan sulfate proteoglycan of cultured cells: demonstration of a lipid- and a matrix-associated form. Biochem Biophys Res Commun. 1981 Dec 31;103(4):1265–1272. doi: 10.1016/0006-291x(81)90259-x. [DOI] [PubMed] [Google Scholar]
  123. Obrind B., Pertoft H., Iverius P. H., Laurent The effect of calcium on the macromolecular properties of heparan sulfate. Connect Tissue Res. 1975;3(2):187–193. doi: 10.3109/03008207509152178. [DOI] [PubMed] [Google Scholar]
  124. Oldberg A., Kjellén L., Hök M. Cell-surface heparan sulfate. Isolation and characterization of a proteoglycan from rat liver membranes. J Biol Chem. 1979 Sep 10;254(17):8505–8510. [PubMed] [Google Scholar]
  125. Oohira A., Wight T. N., Bornstein P. Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J Biol Chem. 1983 Feb 10;258(3):2014–2021. [PubMed] [Google Scholar]
  126. Oohira A., Wight T. N., McPherson J., Bornstein P. Biochemical and ultrastructural studies of proteoheparan sulfates synthesized by PYS-2, a basement membrane-producing cell line. J Cell Biol. 1982 Feb;92(2):357–367. doi: 10.1083/jcb.92.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Oosta G. M., Favreau L. V., Beeler D. L., Rosenberg R. D. Purification and properties of human platelet heparitinase. J Biol Chem. 1982 Oct 10;257(19):11249–11255. [PubMed] [Google Scholar]
  128. Osterlund E., Eronen I., Osterlund K., Vuento M. Secondary structure of human plasma fibronectin: conformational change induced by calf alveolar heparan sulfates. Biochemistry. 1985 May 21;24(11):2661–2667. doi: 10.1021/bi00332a011. [DOI] [PubMed] [Google Scholar]
  129. Parthasarathy N., Spiro R. G. Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J Biol Chem. 1981 Jan 10;256(1):507–513. [PubMed] [Google Scholar]
  130. Parthasarathy N., Spiro R. G. Isolation and characterization of the heparan sulfate proteoglycan of the bovine glomerular basement membrane. J Biol Chem. 1984 Oct 25;259(20):12749–12755. [PubMed] [Google Scholar]
  131. Perkins M. E., Ji T. H., Hynes R. O. Cross-linking of fibronectin to sulfated proteoglycans at the cell surface. Cell. 1979 Apr;16(4):941–952. doi: 10.1016/0092-8674(79)90109-0. [DOI] [PubMed] [Google Scholar]
  132. Prinz R., Schwermann J., Buddecke E., von Figura K. Endocytosis of sulphated proteoglycans by cultured skin fibroblasts. Biochem J. 1978 Dec 15;176(3):671–676. doi: 10.1042/bj1760671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Radhakrishnamurthy B., Smart F., Dalferes E. R., Jr, Berenson G. S. Isolation and characterization of proteoglycans from bovine lung. J Biol Chem. 1980 Aug 25;255(16):7575–7582. [PubMed] [Google Scholar]
  134. Rapraeger A. C., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. A putative membrane proteoglycan associates quantitatively with lipid vesicles. J Biol Chem. 1983 Mar 25;258(6):3632–3636. [PubMed] [Google Scholar]
  135. Rapraeger A., Bernfield M. Cell surface proteoglycan of mammary epithelial cells. Protease releases a heparan sulfate-rich ectodomain from a putative membrane-anchored domain. J Biol Chem. 1985 Apr 10;260(7):4103–4109. [PubMed] [Google Scholar]
  136. Rapraeger A., Jalkanen M., Endo E., Koda J., Bernfield M. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem. 1985 Sep 15;260(20):11046–11052. [PubMed] [Google Scholar]
  137. Ratner N., Bunge R. P., Glaser L. A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J Cell Biol. 1985 Sep;101(3):744–754. doi: 10.1083/jcb.101.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Riesenfeld J., Hök M., Lindahl U. Biosynthesis of heparin. Assay and properties of the microsomal N-acetyl-D-glucosaminyl N-deacetylase. J Biol Chem. 1980 Feb 10;255(3):922–928. [PubMed] [Google Scholar]
  139. Riesenfeld J., Hök M., Lindahl U. Biosynthesis of heparin. Concerted action of early polymer-modification reactions. J Biol Chem. 1982 Jan 10;257(1):421–425. [PubMed] [Google Scholar]
  140. Riesenfeld J., Hözok M., Lindahl U. Biosynthesis of heparan sulfate in rat liver. Characterization of polysaccharides obtained with intact cells and with a cell-free system. J Biol Chem. 1982 Jun 25;257(12):7050–7055. [PubMed] [Google Scholar]
  141. Robinson H. C., Horner A. A., Hök M., Ogren S., Lindahl U. A proteoglycan form of heparin and its degradation to single-chain molecules. J Biol Chem. 1978 Oct 10;253(19):6687–6693. [PubMed] [Google Scholar]
  142. Robinson J., Gospodarowicz D. Effect of p-nitrophenyl-beta-D-xyloside on proteoglycan synthesis and extracellular matrix formation by bovine corneal endothelial cell cultures. J Biol Chem. 1984 Mar 25;259(6):3818–3824. [PubMed] [Google Scholar]
  143. Robinson J., Viti M., Hök M. Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol. 1984 Mar;98(3):946–953. doi: 10.1083/jcb.98.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Rohrbach D. H., Wagner C. W., Star V. L., Martin G. R., Brown K. S., Yoon J. W. Reduced synthesis of basement membrane heparan sulfate proteoglycan in streptozotocin-induced diabetic mice. J Biol Chem. 1983 Oct 10;258(19):11672–11677. [PubMed] [Google Scholar]
  145. Rollins B. J., Culp L. A. Preliminary characterization of the proteoglycans in the substrate adhesion sites of normal and virus-transformed murine cells. Biochemistry. 1979 Dec 11;18(25):5621–5629. doi: 10.1021/bi00592a016. [DOI] [PubMed] [Google Scholar]
  146. Rosenzweig L. J., Kanwar Y. S. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I-bovine serum albumin. Lab Invest. 1982 Aug;47(2):177–184. [PubMed] [Google Scholar]
  147. Ruoslahti E., Engvall E. Complexing of fibronectin glycosaminoglycans and collagen. Biochim Biophys Acta. 1980 Aug 13;631(2):350–358. doi: 10.1016/0304-4165(80)90308-6. [DOI] [PubMed] [Google Scholar]
  148. Sakashita S., Engvall E., Ruoslahti E. Basement membrane glycoprotein laminin binds to heparin. FEBS Lett. 1980 Jul 28;116(2):243–246. doi: 10.1016/0014-5793(80)80654-5. [DOI] [PubMed] [Google Scholar]
  149. Sanderson P. N., Huckerby T. N., Nieduszynski I. A. Very-high-field n.m.r. studies of bovine lung heparan sulphate tetrasaccharides produced by nitrous acid deaminative cleavage. Determination of saccharide sequence, uronate composition and degrees of sulphation. Biochem J. 1984 Oct 15;223(2):495–505. doi: 10.1042/bj2230495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Schubert D., LaCorbiere M. A role of secreted glycosaminoglycans in cell-substratum adhesion. J Biol Chem. 1980 Dec 10;255(23):11564–11569. [PubMed] [Google Scholar]
  152. Schubert D., LaCorbiere M. Isolation of a cell-surface receptor for chick neural retina adherons. J Cell Biol. 1985 Jan;100(1):56–63. doi: 10.1083/jcb.100.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Schubert D., LaCorbiere M. Isolation of an adhesion-mediating protein from chick neural retina adherons. J Cell Biol. 1985 Sep;101(3):1071–1077. doi: 10.1083/jcb.101.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Schubert D., LaCorbiere M., Klier F. G., Birdwell C. A role for adherons in neural retina cell adhesion. J Cell Biol. 1983 Apr;96(4):990–998. doi: 10.1083/jcb.96.4.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Schubert D., LaCorbiere M. The specificity of extracellular glycoprotein complexes in mediating cellular adhesion. J Neurosci. 1982 Jan;2(1):82–89. doi: 10.1523/JNEUROSCI.02-01-00082.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Sekiguchi K., Hakomori S., Funahashi M., Matsumoto I., Seno N. Binding of fibronectin and its proteolytic fragments to glycosaminoglycans. Exposure of cryptic glycosaminoglycan-binding domains upon limited proteolysis. J Biol Chem. 1983 Dec 10;258(23):14359–14365. [PubMed] [Google Scholar]
  157. Shimada K., Gill P. J., Silbert J. E., Douglas W. H., Fanburg B. L. Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells. J Clin Invest. 1981 Oct;68(4):995–1002. doi: 10.1172/JCI110354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Shimada K., Ozawa T. Evidence that cell surface heparan sulfate is involved in the high affinity thrombin binding to cultured porcine aortic endothelial cells. J Clin Invest. 1985 Apr;75(4):1308–1316. doi: 10.1172/JCI111831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Shively J. E., Conrad H. E. Nearest neighbor analysis of heparin: identification and quantitation of the products formed by selective depolymerization procedures. Biochemistry. 1976 Sep 7;15(18):3943–3950. doi: 10.1021/bi00663a006. [DOI] [PubMed] [Google Scholar]
  160. Silva M., Dietrich C. P., Nader H. B. On the structure of heparitin sulfates. Analyses of the products formed from heparitin sulfates by two heparitinases and a heparinase from Flavobacterium heparinum. Biochim Biophys Acta. 1976 Jun 23;437(1):129–141. doi: 10.1016/0304-4165(76)90354-8. [DOI] [PubMed] [Google Scholar]
  161. Stadler H., Dowe G. H. Identification of a heparan sulphate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles from Torpedo marmorata. EMBO J. 1982;1(11):1381–1384. doi: 10.1002/j.1460-2075.1982.tb01326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Stamatoglou S. C., Keller J. M. Correlation between cell substrate attachment in vitro and cell surface heparan sulfate affinity for fibronectin and collagen. J Cell Biol. 1983 Jun;96(6):1820–1823. doi: 10.1083/jcb.96.6.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Stamatoglou S. C., Keller J. M. Interactions of cellular glycosaminoglycans with plasma fibronectin and collagen. Biochim Biophys Acta. 1982 Oct 28;719(1):90–97. doi: 10.1016/0304-4165(82)90311-7. [DOI] [PubMed] [Google Scholar]
  164. Taylor R. L., Shively J. E., Conrad H. E., Cifonelli J. A. Uronic acid composition of heparins and heparan sulfates. Biochemistry. 1973 Sep 11;12(19):3633–3637. doi: 10.1021/bi00743a010. [DOI] [PubMed] [Google Scholar]
  165. Thunberg L., Bäckström G., Lindahl U. Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res. 1982 Mar 1;100:393–410. doi: 10.1016/s0008-6215(00)81050-2. [DOI] [PubMed] [Google Scholar]
  166. Underhill C. B., Keller J. M. A transformation-dependent difference in the heparan sulfate associated with the cell surface. Biochem Biophys Res Commun. 1975 Mar 17;63(2):448–454. doi: 10.1016/0006-291x(75)90708-1. [DOI] [PubMed] [Google Scholar]
  167. Underhill C. B., Keller J. M. Heparan sulfates of mouse cells. Analysis of parent and transformed 3T3 cell lines. J Cell Physiol. 1977 Jan;90(1):53–59. doi: 10.1002/jcp.1040900108. [DOI] [PubMed] [Google Scholar]
  168. Vlodavsky I., Fuks Z., Bar-Ner M., Ariav Y., Schirrmacher V. Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res. 1983 Jun;43(6):2704–2711. [PubMed] [Google Scholar]
  169. Vogel K. G., Dolde J. Cell-surface glycosaminoglycans are not released from human diploid fibroblasts by non-enzymatic methods. Biochim Biophys Acta. 1979 Mar 23;552(1):194–200. doi: 10.1016/0005-2736(79)90259-1. [DOI] [PubMed] [Google Scholar]
  170. Vogel K. G., Paulsson M., Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984 Nov 1;223(3):587–597. doi: 10.1042/bj2230587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Walter P., Gilmore R., Blobel G. Protein translocation across the endoplasmic reticulum. Cell. 1984 Aug;38(1):5–8. doi: 10.1016/0092-8674(84)90520-8. [DOI] [PubMed] [Google Scholar]
  172. Welsh E. J., Frangou S. A., Morris E. R., Rees D. A., Chavin S. I. Tyrosine optical activity as a probe of the conformation and interactions of fibronectin. Biopolymers. 1983 Mar;22(3):821–831. doi: 10.1002/bip.360220305. [DOI] [PubMed] [Google Scholar]
  173. Williams E. C., Janmey P. A., Ferry J. D., Mosher D. F. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J Biol Chem. 1982 Dec 25;257(24):14973–14978. [PubMed] [Google Scholar]
  174. Williams M. P., Streeter H. B., Wusteman F. S., Cryer A. Heparan sulphate and the binding of lipoprotein lipase to porcine thoracic aorta endothelium. Biochim Biophys Acta. 1983 Mar 15;756(1):83–91. doi: 10.1016/0304-4165(83)90027-2. [DOI] [PubMed] [Google Scholar]
  175. Winterbourne D. J. Binding of heparan sulphate and heparin to control and virus-transformed cells. Biosci Rep. 1982 Dec;2(12):1009–1015. doi: 10.1007/BF01122169. [DOI] [PubMed] [Google Scholar]
  176. Winterbourne D. J., Mora P. T. Altered metabolism of heparan sulfate in simian virus 40 transformed cloned mouse cells. J Biol Chem. 1978 Jul 25;253(14):5109–5120. [PubMed] [Google Scholar]
  177. Winterbourne D. J., Mora P. T. Cells selected for high tumorigenicity or transformed by simian virus 40 synthesize heparan sulfate with reduced degree of sulfation. J Biol Chem. 1981 May 10;256(9):4310–4320. [PubMed] [Google Scholar]
  178. Winterbourne D. J., Salisbury J. G. Heparan sulphate is a potent inhibitor of DNA synthesis in vitro. Biochem Biophys Res Commun. 1981 Jul 16;101(1):30–37. doi: 10.1016/s0006-291x(81)80006-x. [DOI] [PubMed] [Google Scholar]
  179. Winterbourne D. J., Schor A. M., Gallagher J. T. Synthesis of glycosaminoglycans by cloned bovine endothelial cells cultured on collagen gels. Eur J Biochem. 1983 Sep 15;135(2):271–277. doi: 10.1111/j.1432-1033.1983.tb07648.x. [DOI] [PubMed] [Google Scholar]
  180. Woodley D. T., Rao C. N., Hassell J. R., Liotta L. A., Martin G. R., Kleinman H. K. Interactions of basement membrane components. Biochim Biophys Acta. 1983 Dec 27;761(3):278–283. doi: 10.1016/0304-4165(83)90077-6. [DOI] [PubMed] [Google Scholar]
  181. Woods A., Hök M., Kjellén L., Smith C. G., Rees D. A. Relationship of heparan sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts. J Cell Biol. 1984 Nov;99(5):1743–1753. doi: 10.1083/jcb.99.5.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Yamada K. M., Kennedy D. W., Kimata K., Pratt R. M. Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem. 1980 Jul 10;255(13):6055–6063. [PubMed] [Google Scholar]
  183. Yanagishita M., Hascall V. C. Characterization of heparan sulfate proteoglycans synthesized by rat ovarian granulosa cells in culture. J Biol Chem. 1983 Nov 10;258(21):12857–12864. [PubMed] [Google Scholar]
  184. Yanagishita M., Hascall V. C. Effects of monensin on the synthesis, transport, and intracellular degradation of proteoglycans in rat ovarian granulosa cells in culture. J Biol Chem. 1985 May 10;260(9):5445–5455. [PubMed] [Google Scholar]
  185. Yanagishita M., Hascall V. C. Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine. J Biol Chem. 1984 Aug 25;259(16):10270–10283. [PubMed] [Google Scholar]
  186. Yanagishita M., Hascall V. C. Proteoglycans synthesized by rat ovarian granulosa cells in culture. Isolation, fractionation, and characterization of proteoglycans associated with the cell layer. J Biol Chem. 1984 Aug 25;259(16):10260–10269. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES